13) y = 4x - 3 -8x + 6y = 14

Answers

Answer 1
[tex]\begin{gathered} y=4x-3 \\ -8x+6y=14 \end{gathered}[/tex]

Replacing y in the second equation

[tex]\begin{gathered} -8x+6(4x-3)=14_{} \\ -8x+24x-18=14 \\ 16x=14+18 \\ 16x=32 \\ x=\frac{32}{16} \\ x=2 \end{gathered}[/tex]

Then

[tex]\begin{gathered} y=4(2)-3 \\ y=8-3 \\ y=5 \end{gathered}[/tex]

Just checking our answer

[tex]-8(2)+6(5)=-16+30=14[/tex]

So the correct answer is x=2 and y=5


Related Questions

The height, h (in meters above ground), of a projectile at any time, t (in seconds), after the launch is defined by the function h(t) = −5t2 + 13t + 6. The graph of this function is shown below. When rounded to the nearest tenth, what is the maximum height reached by the projectile, how long did it take to reach its maximum height, and when did the projectile hit the ground?

Answers

As we can se from the graph, the maximum value of the function is almost 15 meters, it is reached between t=1s and t=2s, and the height is 0 again when the time is approximately 3 seconds.

We can find the exact values by using the equation.

First, find the zeroes of the function by setting h(t)=0 and solving the quadratic equation for t:

[tex]\begin{gathered} h(t)=-5t^2+13t+6=0 \\ \Rightarrow t=\frac{-13\pm\sqrt[]{13^2-4(6)(-5)}}{2(-5)} \\ \Rightarrow t_1=-0.4;t_2=3 \end{gathered}[/tex]

Then, the projectile hits the ground at t=3s.

To find the time at which the projectile reaches its maximum height, find the average between both zeroes:

[tex]t_{\max }=\frac{t_1+t_2}{2}=\frac{-0.4s+3s}{2}=1.3s[/tex]

To find the maximum height, evaluate h at t=1.3s:

[tex]h(1.3s)=-5(1.3)^2+13(1.3)+6=14.45[/tex]

Therefore, to the nearest tenth, the projectile reached a maximum height of 14.5 meters in 1.3 seconds and it took 3.0 seconds for it to hit the ground.

The correct option is the second one.

please Solve for brainliest and 20 points

Answers

Answer:

g=30

Step-by-step explanation:

Answer:

g = 28

Step-by-step explanation:

( n - 2 ) × 180

( 30 - 2 ) × 180

( 28 ) × 180 = 5040

6g × 30 = 180g

5040 = 180g

÷180     ÷180

--------------------

28 = g

I hope this helps!

64x power 9 as a cube of a monomial

Answers

Answer:21

Step-by-step explanation:

What bearing and airspeed are required for a plane to fly 360 miles due north in 2.0 hours if the wind is blowing from a direction of 331 degrees at 15 mph?

Answers

Using the vector form of velocity, it is possible to calculate the airspeed and bearing, which are 165.33 mph and 0.7 degrees respectively.

Given:

A plane may go 360 miles straight north in 2.0 hours if the wind is blowing at 15 mph and 331 degrees from the north.

You can use the following formula to calculate airspeed.

[tex]V^{2} =V_{x} ^{2} + V_{y} ^{2}- 2v_{x} v_{y}cos\beta \\[/tex] ...........equation (1)

[tex]v_{x}[/tex] is the velocity of the wind and [tex]v_{y}[/tex] is the velocity of the plane.

[tex]\beta = 331-180 = 151 degree[/tex]

Putting [tex]v_{x}, v_{y} , \beta[/tex] in equation (1)

[tex]V^{2}= 15^{2} +180^{2} -2*15*180*cos151\\ V^{2} = 225 + 32400 - 5400*cos151\\V^{2} = 27336.49\\V = 165.33[/tex]

Hence, The airspeed of the plane is 165.33 mph

Now,

[tex]\frac{sin\alpha }{v_{x} } =\frac{sin\beta }{V} \\\frac{sin\alpha }{15 } =\frac{sin151 }{165.33} \\\\sin\alpha = 10*0.00122\\\alpha = 0.7[/tex]

Hence bearing required is 0.7 degrees.

To read more about vector forms of velocity, visit https://brainly.com/question/28216795

#SPJ1

Of the 100 million acres in California,
the federal government owns 45 million
acres. What percent is this?

Answers

Step-by-step explanation:

you do know what a percent is ?

1% is the 1/100 part of a whole.

when we have

100,000,000 (one hundred million),

how many 1/100 parts of that are

45,000,000 (45 million)?

well, 45.

45,000,000 is 45/100 of 100,000,000

in other words 45%.

Find a solution for the equation. x^2-6x-8=0

Answers

Given:

[tex]x^2-6x-8=0[/tex]

Required:

To find the solution of the given equation.

Explanation:

From the given equation,

[tex]\begin{gathered} a=1 \\ b=-6 \\ c=-8 \end{gathered}[/tex]

Now

[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

Therefore,

[tex]x=\frac{-(-6)\pm\sqrt{(-6)^2-4(1)(-8)}}{2(1)}[/tex][tex]\begin{gathered} x=\frac{6\pm\sqrt{36+32}}{2} \\ \\ =\frac{6\pm\sqrt{68}}{2} \\ \\ =\frac{6\pm2\sqrt{17}}{2} \\ \\ =\frac{2(3\pm\sqrt{17)}}{2} \\ \\ =3\pm\sqrt{17} \end{gathered}[/tex]

Final Answer:

The solutions are

[tex]x=3+\sqrt{17},3-\sqrt{17}[/tex]

twice a number increased by twenty is at least eighty-five. select all possible value of the number.
31
35
32
30
33
40
20
34​

Answers

The number when increased by twenty is at least 85, the possible values  of the numbers for this are: 35, 33, 40 and 34.

Given, according to the statement in the question, frame the equation:

2x+20 ≥ 85

⇒ 2x + 20 ≥ 85

⇒ 2x ≥ 85 - 20

⇒ 2x ≥ 65

⇒ x ≥ 65/2

⇒ x ≥ 32.5

hence the numbers greater than or equal to 32.5 are 35, 33, 40 and 34.

Hence the possible values of the number are 35, 33, 40 and 34.

Learn more about solving equations here:

brainly.com/question/13729904

#SPJ1

6+4×2+11+10÷2 order

Answers

To solve the following calculation

[tex]6+4\cdot2+11+10\div2[/tex]

You have to keep in mind the order of operations. Which states that multiplications and divisions are to be solved before additions or subtractions.

So the first step is to solve the multiplication "4*2" and the division "10÷2"

[tex]6+8+11+5[/tex]

Now all that is left is to add the numbers when you have to perform the same operation several times, you have to solve them from lef

20 pts, precalc, see attach
If f (x) = 3x2 + 5x − 4, then the quantity f of the quantity x plus h end quantity minus f of x end quantity all over h is equal to which of the following?

Answers

The numeric value for the given expression is as follows:

[tex]\frac{j(x + h) - j(x)}{h} = \frac{4^{x - 2}(4^h - 1)}{h}[/tex]

How to find the numeric value of a function or of an expression?

To find the numeric value of a function or of an expression, we replace each instance of the variable in the function by the desired value.

In the context of this problem, the function j(x) is given as follows:

[tex]j(x) = 4^{x - 2}[/tex]

At x = x + h, the numeric value of the function is found replacing the lone instance of x by x + h as follows:

[tex]j(x + h) = 4^{x + h - 2}[/tex]

For the fraction, the subtraction at the numerator is given as follows, applying properties of exponents:

[tex]j(x + h) - j(x) = 4^{x + h - 2} - 4^{x - 2} = 4^{x - 2}(4^h - 1)[/tex]

As the x - 2 term is common to both exponents.

Just dividing by h, the numeric value of the entire expression is given as follows:

[tex]\frac{j(x + h) - j(x)}{h} = \frac{4^{x - 2}(4^h - 1)}{h}[/tex]

Which means that the third option is correct.

More can be learned about the numeric values of a function at brainly.com/question/28367050

#SPJ1

A school offers band and chorus classes. The table shows the percents of the 1200 students in the school who are enrolled in band, chorus, or neither class. How many students are enrolled in both classes?

Class Enrollment
Band 34%
Chorus 28%
Neither 42%

Answers

168 students are enrolled in both classes.

This is a problem from set theory. We can solve this problem by following a few steps easily.

First of all, we have to calculate the students present in both classes.

Student present in both classes = the total student - the student not enrolled in both classes.

So the percentage of the students enrolled in both classes or any of one class is ( 100% - 42% ) = 58%.

Now, the students only enrolled in chorus class is ( 58% - 34%) = 24%

So, the students who joined both classes is ( 28%- 24%)= 4%

The total student is 1200, then 4% of the total student is

( 1200 × 14 )/100 = 168 students.

To know more about set theory visit,

https://brainly.com/question/13205223?referrer=searchResults

#SPJ9

Ronny is selling coffee mugs for $4.00. So far, he has earned $344.00. Ronny needs to earn more than $392.00 in order to meet his sales goal. How many more coffee mugs, x, does Ronny need to sell in order to reach his sales goal?

Answers

Answer:

25 more cups

Step-by-step explanation:

1. You need more than $636.00, but you already have $492.00. To find the needed amount of cups needed to sell, you need to find the difference of the two prices first. In other words, you need to subtract the total needed by the amount already raised.

2. You can get the equation, 636 - 492 = 144

3. Now that you have the amount needed, you can divide the number that you got (144) by 6. You divide it by 6 because that is the amount each cup costs.

4. After dividing 144 by 6, you should get 24. This gives your answer for getting EXACTLY 636. However, in this case, you need more to reach your goal. Since you cannot sell fractions of a cup, just raising it by one can reach your goal. We can add one to 24, making it 25.

In conclusion, you need to sell 25 more cups to reach your goal.

An accident investigator measured the skid marks of one of the vehicles involved in an accident. The length of the skid marks was 245ft. Use the formula s=24d−−−√ to find the speed of the vehicle before the brakes were applied. Round your answer to the nearest tenth.

Answers

The vehicle speed is 53 units if s = 24d and d = 245ft

Given the formula for speed is  =  √24 d

s denotes the vehicle's speed.

d = the length of the skid marks

We need to find the speed of the vehicle.

We know that the displacement d is 117 ft

d = 117 ft

And also it is mentioned in the question to use the below-given formula.

s = √24d

Now substituting the value of displacement in the formula we get

=> s = √24 x 117

=> s = √2808

=> s = 52.99

Now approximating to the nearest value of the decimal, we get.

=> s = 53

Therefore the speed of the vehicle is 53 units.

Learn more about velocity at

https://brainly.com/question/18084516?referrer=searchResults

#SPJ1

Rewrite the decimal fraction as a decimal number.

14 25
100

Answers

The decimal number of the fraction [tex]14\frac{25}{100}[/tex] is 14.25

The given mixed fraction = [tex]14\frac{25}{100}[/tex]

The mixed fraction is the fraction that consist of one whole number and the simple fraction.

The simple fraction is the fraction that consist of numerator and denominator as whole number. The top term of the simple fraction is called numerator and bottom term is called denominator

The decimal number is a number that consist of one whole number and the fractional part. The fractional parts are separated by a decimal point.

The number is [tex]14\frac{25}{100}[/tex]

Convert the mixed fraction to simple fraction

[tex]14\frac{25}{100}[/tex] = (100×14+25)/100

= 57/4

Convert the simple fraction to decimal number

57/4 = 14.25

Hence, the decimal number of the fraction [tex]14\frac{25}{100}[/tex] is 14.25

The complete question is:

Rewrite the decimal fraction as a decimal number.

[tex]14\frac{25}{100}[/tex]

Learn more about decimal number here

brainly.com/question/4708407

#SPJ1

Juan took out a $5000 loan for 292 days and was charged simple interest.
The total interest he paid on the loan was $336 As a percentage, what was the annual interest rate of Juan's loan?
Assume that there are 365 days in a year

Answers

Since the total interest he paid on the loan was $336. Then, The annual interest rate of Juan's loan if there are 365 days in a year  will be as at 8.4%.

What is Simple Interest?

Simple Interest (S.I.) is the method of calculating the interest amount for a particular principal amount of money at some rate of interest.

For example, when a person takes a loan of Rs. 5000, at a rate of 10 p.a. for two years, the person's interest for two years will be S.I. on the borrowed money.

The formula of simple interest is given as:

S.I = PRT

Where:

P = principalR = rateT = time

Substituting the values and solving for the rate on the loan

r = {A} {PT}\r

= {5336} {5000*292}

r = 8.4 %

Learn more on simple interest here

https://brainly.com/question/20690803

#SPJ1

Where X in the age of the baby in months according to this model what is the weight in pounds of a baby At age 5 months

Answers

The given function is:

f(x) = 1.5x + 7

Then, since x represents the age of the baby, in months, in order to find its weight with 5 months, that is, f(5), we need to replace x by 5 in the above equation:

f(5) = 1.5 * 5 + 7 = 7.5 + 7 = 14.5

Therefore, the last option is correct.

Write the point slope form of the line satisfying the given conditions. Then use the point slope form of the equation to write the slope intercept form of the equation. Slope=7Passing through (-6,1)

Answers

Ok, so

The point slope form of the line is given by the following formula:

[tex](y-y_1)=m(x-x_1)[/tex]

Where

[tex](x_1,y_1)[/tex]

Is a point of the line, and m is the slope.

If we replace our values:

Slope = 7

Point = (-6, 1)

We obtain that the equation is:

[tex]\begin{gathered} (y-1)=7(x-(-6)) \\ (y-1)=7(x+6) \end{gathered}[/tex]

To find the slope intercept form of the equation, we distribute in the brackets:

[tex]\begin{gathered} y-1=7x+42 \\ y=7x+43 \end{gathered}[/tex]

And the equation of our line in the slope intercept form will be:

y=7x+43

— 3х + 2 = -4х + 4 need help

Answers

Given the following equation:

[tex]-3x+2=-4x+4[/tex]

You need to solve for "x" in order to find its value and solve the equation. To do this, you can follow the steps shown below:

1. You need to apply the Subtraction property of equality by subtracting 2 from both sides of the equation:

[tex]\begin{gathered} -3x+2-(2)=-4x+4-(2) \\ -3x=-4x+2 \end{gathered}[/tex]

2. Now you can apply the Additio property of equality by adding "4x" to both sides of the equation:

[tex]\begin{gathered} -3x+(4x)=-4x+2+(4x) \\ x=2 \end{gathered}[/tex]

Therefore, you get that the solution is:

[tex]x=2[/tex]

What is the square root of 225As I am new to thisPlease answer step by step in the easiest form possible

Answers

Given:

[tex]225[/tex]

To Determine: The square root of the given number

Solution

Step 1: Express 225 as the product pf its prime factors of 225

[tex]\begin{gathered} 225=3\times3\times5\times5 \\ 225=3^2\times5^2 \end{gathered}[/tex]

Step 2: Separate the factors into their own square root

[tex]\begin{gathered} \sqrt{225}=\sqrt{3^2\times5^2} \\ \sqrt{225}=\sqrt{3^2}\times\sqrt{5^2} \end{gathered}[/tex]

Step 3: Solve the individual's squares

[tex]\begin{gathered} \sqrt{225}=\sqrt{3^2}\times\sqrt{5^2} \\ \sqrt{225}=3\times5=15 \end{gathered}[/tex]

Hence, the square root of 225 is 15

WILL MARK BRAINLIEST. Two functions are given below: f(x) and h(x). State the axis of symmetry for each function and explain how to find it

Answers

Answer:

The axis of symmetry is -4 because the axis of symmetry is equal to h, in the vertex form!

Find the average rate of change of f(x) = - 2x ^ 2 - x from x = 1 to x = 6 . Simplify your answer as much as possible .

Answers

The average rate of change of a function in the interval [a,b] is given by:

[tex]\frac{f(b)-f(a)}{b-a}[/tex]

In this case we have that a=1 and b=6; plugging these values in the formula above we have:

[tex]\begin{gathered} \frac{-2(6)^2-6-(-2(1)^2-1)}{6-1}=\frac{-2(36)-6-(-2(1)-1)}{5} \\ =\frac{-72-6-(-2-1)}{5} \\ =\frac{-78-(-3)}{5} \\ =\frac{-78+3}{5} \\ =\frac{-75}{5} \\ =-15 \end{gathered}[/tex]

Therefore, the average rate of change in the interval is -15

On average, Peter goes through three fish hooks in order to catch 7 fish. How many hooks can he expect to use if he needs to catch 189 fish?

Answers

By solving a proportional relation, we conclude that he needs 81 hooks to catch 189 fish.

How many hooks can he expect to use if he needs to catch 189 fish?

We assume there is a proportional relationship of the form:

F = k*H

where:

F = number of fish.k = constant of proportionality.H = number of hooks.

We know that with 3 hooks he catches 7 fish, then we can replace that:

7= k*3

7/3 = k

So the proportional relation is:

y = (7/3)*x

Then if he wants to get 189 fish we can write:

189 = (7/3)*x

And solve this for x:

189*(3/7) = x =81

He will need 81 hooks.

Learn more about proportional relationships:

https://brainly.com/question/12242745

#SPJ1

What is the P(A and B) if P(A) = 1/2 and P(B) = 2/7, where A and B are independent events?5/81/71/121/2

Answers

EXPLANATION:

To calculate the number of independent events that occur, the product of the probabilities of the individual events occurring must be calculated.

Therefore if A and B are independent events then:

P (A and B) = P (A) • P (B)

The exercise is as follows:

[tex]\begin{gathered} \frac{1}{2}\times\frac{2}{7}=\frac{2}{14};\text{ Now }we\text{ must take }square\text{ r}oot; \\ \frac{2}{14}=\frac{1}{7} \\ \text{ANSWER: }\frac{1}{7} \end{gathered}[/tex]

NOTE:

To obtain the product of two fractions, the numerators must be multiplied with each other and the denominators must also be multiplied with each other.

PLEASE HELP ITS DUE SOON! I DONT GET ANY OF THIS! HELP WOULD BE MUCH APPRECIATED! NEED THIS DONE BEEN STUCK ON THIS FOR WAY TO LONG!
YOU WILL GET 100 POINTS IF YOU HELP! QUESTION DOWN BELOW!!!!!
THIS IS MY LAST QUESTION!!

Answers

Answer:

Step-by-step explanation:

statement:

1 = 2

reason:

since 1 and 4 are equal to each other and because lines AB and CD are parallel, any line crossing both lines will create the same angles in the same areas, thus connecting 4 and 2 together. And since 4 is equal to 1, it is also equal to 2.

I hope this helps!

Answer:

statement is 1=2

reason: since 1 and 4 are eqaul to eachothers and beacause lines AB CD are parelle, any line crossing both lines will create the same angels and same area

Find the minimum value of
C = 6x + 3y
Subject to the following constraints:
x > 1
y ≥ 1
4x + 2y < 32
2x + 8y < 56

Answers

Answer:

  9

Step-by-step explanation:

You want the minimum value of objective function C=6x+3y, given the constraints x>1, y≥1, 4x+2y<32, and 2x+8y<56.

Minimum

The objective function has positive coefficients for both x and y, so it will be minimized when x and y are at their minimum values. The constraints tell you these minimum values are x=1 and y=1, so the minimum value of C is ...

  C = 6(1) +3(1) = 9

The minimum value of C is 9.

__

Additional comment

The value of x cannot actually be 1, so the value of C cannot actually be 9. However x may be arbitrarily close to 1, so C may be arbitrarily close to 9.

  C = 6x +3y   ⇒   x = (C -3y)/6

The x-constraint requires ...

  x > 1

  (C -3y)/6 > 1

  C -3y > 6 . . . . . . multiply by 6

  C > 6 +3y . . . . . . add 3y

The minimum value of y is exactly 1, so we have ...

  C > 6 +3(1)

  C > 9

how can i find x and y in a triangle?

Answers

Using the sine formula;

sin 60 / x = sin 90 / 16

cross-multiply

x sin 90 = 16 sin 60

Divide both-side of the equation by sin 90

x = 16 sin 60 /sin 90

x= 13.86

To find y, we can simply use the Pythagoras theorem

opp² + adj² = hyp²

13.86² + y² = 16²

192.0996 + y² =256

subtract 192.0996 from both-side of the equation

y² = 256 - 192.0996

y² = 63.9004

Take the square root of both-side

y = 7.99

Write the equation of the line, with the given properties, in slope intercept form. Slope = -7, through (-6,8)

Answers

Given:

The slopr of line is m = -7.

The line passes through point (-6,8).

Explanation:

The equation of line in slope-intercept form is,

[tex]y=mx+c[/tex]

Substitute the valus in the equation to determine the value of c.

[tex]\begin{gathered} 8=-7\cdot(-6)+c \\ c=8-42 \\ =-34 \end{gathered}[/tex]

So equation of line is y = -7x - 34.

There are two box containing only yellow and black pens

Answers

SOLUTION; Concept

Step1: Identify the giving information in the question

BOX A contains

[tex]\begin{gathered} 9\text{ yellow pens} \\ 6\text{ Black pens } \end{gathered}[/tex]

BOX B contains

[tex]\begin{gathered} 9\text{ yellow pens } \\ 11\text{ black pens} \end{gathered}[/tex]

Step2: Find the probability of each event

Event 1: Choosing a green pen from the Box B

[tex]\begin{gathered} \text{ Since there is no gr}een\text{ pen in the box, then probability of choosing a gr}en\text{ box in Box B is 0} \\ \text{then probability of choosing a gr}en\text{ box in Box B is 0} \\ Pr(E1)=0 \end{gathered}[/tex]

Event 2: Choosing a black pen from the Box B

[tex]P(E2)=\frac{11}{9+11}=\frac{11}{20}=0.55[/tex]

Event 3: Choosing a yellow or black pen from the Box A

Since Box A contains only a yellow or black pen then the probability is

[tex]Pr(E3)=1[/tex]

Event 4: Choosing a yellow pen from box A

Since there are 9 yellow pens in box A, the probability of choosing the yellow pen is

[tex]Pr(E4)=\frac{9}{9+6}=\frac{9}{15}=0.6[/tex]

Probability describes the likelihood of the event.

Hence From least likely to most likely the occurrence of the event is arranged as follows according to the probability of each event

[tex]\text{Event }1\rightarrow\text{ Event 2}\rightarrow\text{ Event 4}\rightarrow\text{ Event 3}[/tex]

Translate the following sentence into an equation.

Twelve minus three times x equals fourteen.

Answers

Answer:

12-3x=14

Step-by-step explanation:

2) The Allen's rectangular backyard has a
perimeter of 144 feet. If the backyard is 40
feet wide, what is the area of their yard?

Answers

Answer:

1280 ft²

Step-by-step explanation:

Perimeter is the addition of all sides of the shape added together. Therefore, if the backyard is the rectangular shape you know that two of the sides are 40 feet wide. By adding both sides you get a total of 80 feet. Subtract the total from the perimeter in order to get the total of the unknown sides. 144 minus 80 is equivalent to 64. Now that you have the total of the unknown sides, divide by two in order to get the single unknown length. So, 64 divided by 2 is equal to 32. The area is the multiplication of two sides with quadrilaterals. Therefore, 40 times 32 equals an area of 1280 feet squared.

1 ptsQuestion 22The point A(8,-6) has been transformed using the composition T-15) • r(180,0). Where is A?0 (71)o 17, -1)0 (-7,1)0 (-7, -1)+ Previous

Answers

You have to perform two transformations the first one is a 180º rotation with respect to the origin r(180º,O) and the second one is a translation of one unit left and 5 units up T(-1,5)

Given point A(8,-6)

To make a 180º rotation you have to invert the signs of both coordinates, following the rule:

[tex](x,y)\to(-x,-y)[/tex]

For point A, the rotation is the following:

[tex]A(8,-6)\to A^{\prime}(-8,--6)=(-8,6)[/tex]

Once you rotate the point, you have to perform the translation T(-1,5). The rule for the translation can be expressed as follows

[tex](x,y)\to(x-1,y+5)[/tex]

So, the translation of point (-8,6) is:

[tex]A^{\prime}(-8,6)\to A^{\doubleprime}(-8-1,6+5)=(-9,11)[/tex]

Other Questions
Which of the following statements is INCORRECT?a) The Mayan civilization arose in the highland areas of Mexico.b) The Aztec civilization was founded after the Maya Civilization.c) The ceremonial center of the Aztec civilization, named Tenochtitlan, was located in the Valley of Mexico.d) Maya languages are still used today in parts of Mexico.e) The Aztecs were conquered by the Spanish. How does senator obamas use of the metaphor ""beacon of freedom"" reflect the purpose of inspiring the audience to take action in the upcoming election? select all that apply. 1) Choose whether thyroid or thymus applies to each of the following:WhiteDark redShaped like a VShaped like a small bean Need answer as soon as possible, emergency, please be 100% sure, thank you Help need please!!!!!!!factorize 36a-12b-60c The posterior axial muscle that crosses the glenohumeral joint is the __________. please help me out fr The quadrilateral RSTU is inscribed in the circle shown below. S R U Jake wants to prove the theorem that says that the measure of the quadrilateral's opposite angles add to 180. He knows that the measure of angle Ris half the measure of are STU and that the measure of angle T is half the measure of arc SRU. Which of the following is an appropriate step to prove that ZR + ZT =180? Kim buys 6 pounds of apples.What is the weight of the apples in kilograms?Round to the nearest tenth, if necessary. Let f(x) = (6x - 7) and g(x) = 6x - 7.Given that f(x) = (h g)(x), find h(x).0080Clear allEnter the correct answer.+?DONE Who pays the true cost of so many novice climbers trying to summit the mountain? What is that cost? An air traffic controller spots two planes flying at the same altitude. Their flight paths form a right angle at point P. One plane is 150 miles from point P and is moving at 440 miles per hour. The other plane is 200 miles from point P and is moving at 440 miles per hour. Write the distance s between the planes as a function of time t. Solve the trigonometric equation for all values 0 x < 2.tan x - 1 = 0 Who held the belief of predestination and what kind of lives did the followers of this belief live? Hint: first convert the given final speed (in mph) to find ft/s, then solve for the distance and acceleration. an organizations is a statement of its fundamental, unique purpose that sets a business apart from other firms of its type and identifies the scope of the businesss operations in product and market terms. What is the answer to this eqaution 7.68+3.1812 ater is considered hypoxic (lacking oxygen) if it contains 2 mg/l or less dissolved oxygen. think of the food chain that exists in the gulf of mexico: what are the types of organisms that likely live at the bottom of the gulf, where the water is most hypoxic? how can a lack of oxygen affect them? which cellular processes are affected by a lack of oxygen? using a lancet over 2.5mm to 3mm is acceptable when? What is 4/5 the sum of w and z given that w = 12 and z = 43