Explanation:
The term "binding price floor" means "a price that is above equilibrium".
If the floor is at equilibrium or lower, then buyers and sellers will just go for the equilibrium price (as they naturally would have done anyway) and there's no need for the floor. In such cases, the floor is considered non-binding.
As you pointed out in the table, the equilibrium price is $3 where quantity supplied equals quantity demanded. A binding floor price would be $4 since it's above equilibrium.
Determine whether the distribution represents a discrete probability distribution. Justify your answer
The probability distribution is given in the table.
The condition for the probability distribution is
1. The sum of the probability distribution is 1.
2. The probabilities value range between 0 and 1.
Condition to check the probability distribution
[tex]0.35+0.25+0.22+0.12=0.94[/tex]The sum of the probability is not equal to 1.
Hence the distribution does not represents a discrete probability distribution.
how do i graph the equation y=2000x+4000
Answer:
first draw the line edges and vertical
second put the dot every no.
And put the y=2000×+4000
Write the correct expression for the following statement:
x six times
x^6
Step-by-step explanation:
I don't know how to explain but I think this is what you mean
Use four rectangles to estimate the area between the graph of the function f(x) = V3x + 5 and the x-axis on the interval[0, 4] using the left endpoints of the subintervals as the sample points. Round any intermediate calculations, if needed, to noless than six decimal places, and round your final answer to three decimal places.
Answer:
12.123
Step-by-step explanation:
You want the area under the curve f(x) = √(3x+5) on the interval [0, 4] estimated using the left sum and four subintervals.
Riemann sumWhen the interval [0, 4] is divided into four equal parts, each has unit width. That means the area of the rectangle defined by the curve and the interval width will be equal to the value of the curve at the left end of the interval.
The area we want is the sum ...
f(0) +f(1) +f(2) +f(3)
As the attachment shows, that sum is ...
area ≈ 12.123 . . . square units
__
Additional comment
The table values in the attachment are rounded to 7 decimal places. Trailing zeros are not shown. Actual values used have 12 significant digits, as the total shows.
Such a sum is called a Riemann sum, named for a German mathematician. Four such sums are commonly used, and further refinements are possible. Those are the left sum (as here), the right sum, the midpoint sum, and a sum using a trapezoidal approximation of the rectangle area.
For left, right, and midpoint sums, n function values are required for n subintervals. When the trapezoidal approximation is used, n+1 function values are required.
B= (s+z/2) m solve for s
please help i need to get my grade up
Answer:
See below
Step-by-step explanation:
1. Multiply m to get, m(s + z)/2 => (ms + mz)/2
2. Mutiply by 2 by both sides
2B = MS + MZ
3. Divide By M
2B = M(S+Z)
2B/M = S+Z
4. Minus Z
(2B/M - Z) = S
What does the leading term of −5x^4+4x^3−6x^2+8 tell you?
Step-by-step explanation:
The leading term is -5x^4, which tells us the highest degree of the polynomial.
The leading term in the equation tells us about the degree and whether the curve opens outwards on inwards
What is an equation in one variable?
An equation is a polynomial in one variable with a finite degree
We are given an equation
[tex]-5x^4+4x^3-6x^2+8[/tex]
In this the leading term is -5x^4
Here the coefficient is negative this tells us that the curve opens downwards. if the coefficient has been positive then the curve would open outwards.
Also from the leading term we can find out the degree of the highest variable. the degree of highest variable in this case is 4
Hence, The leading term in the equation tells us about the degree of the variable and whether the curve opens outwards on inwards
To learn more about the equation in one variable please refer
https://brainly.com/question/26310043
#SPJ13
For the function f(x), = 10 (√x + 9), find f-¹(x).
The inverse of the function f(x) = 10 (√x + 9) is f⁻¹(x) = (x - 90)² / 100
Given,
The function, f(x) = 10 (√x + 9)
We have to find the inverse of the function, f⁻¹(x)
Here,
f(x) = 10 (√x + 9)
f(x) = 10√x + 90
Replace f(x) with y.
y = 10√x + 90
Swap x with y;
x = 10√y + 90
Solve for y
That is,
x = 10√y + 90
x - 90 = 10√y
(x - 90) / 10 = √y
Square both sides
((x - 90) / 10)² = √y²
(x - 90)² / 100 = y
Replace y with f⁻¹(x)
That is,
f⁻¹(x) = (x - 90)² / 100
Therefore,
The inverse for the function f(x) = 10 (√x + 9) is f⁻¹(x) = (x - 90)² / 100
Learn more about inverse of the function here;
https://brainly.com/question/2541698
#SPJ1
2(3x+6)-96=6(2x-4)-56Which value of x makes the equation true?A. X=-2B. x=-2/3C. x=2D. x=3
Given equation:
[tex]2(3x+6)-96=6(2x-4)-56[/tex]Solve the equation to find the value of x,
[tex]\begin{gathered} 2(3x+6)-96=6(2x-4)-56 \\ 2(3x)+2(6)-96=6(2x)-6(4)-56 \\ 6x+12-96=12x-24-56 \\ 6x-84=12x-80 \\ -84+80=12x-6x \\ -4=6x \\ x=\frac{-4}{6} \\ x=-\frac{2}{3} \end{gathered}[/tex]Hence, x=-2/3
Answer: option B) is correct
Answer:
2(3×+6) is 96 _6 by (2×4=5) with A.X
Which value makes the equation 5b + 15 = 30 true?
A b=3
B b=9
C b= 10
D b=75
Answer:
Hello! The answer is A) B=3
Step-by-step explanation:
Hope I helped! Please mark brainiest if get chance.
(Ps: Are you an army?)
n
4 Which expression is equivalent to 8.508 ÷ 70.9?
A 8.508 709
B 85.08 709
C 850.8 709
D 8,508 709
5 What is the value of 0.5 ÷ 0.8? Show your work.
Answer:
a because 8.508
Step-by-step explanation:
0.625 so it easy 0.5:0.8
Assume that AGHI ALMN. Which of the following congruence statements
are correct? Check all that apply.
A. ZN=21
B. ZL 41
C. ME ZH
☐ D. GH = LM
E. IG= LM
F. IH NM
The following congruence statements a, b, e, f are correct.
Triangle congruence: If all three corresponding sides and all three corresponding angles seem to be equal in size, two triangles are said to be congruent.
When two triangles are congruent, their sides and corresponding angles are identical.
Therefore, if GHI is congruent to LMN, then GH =LM, HI=MN and GI=LN, and also angle G=angle L, Angle H=angle M, while angle I = angle N, therefore the correct answers is f) ∠M= ∠H, (a) GH = LM b) ∠L=∠G. and e)IH=NM.
Therefore, option a, b, e, f are correct.
To learn more about congruence from the given link:
https://brainly.com/question/8821296
#SPJ13
The quotient of 134 and z is the same as 374
We will ahve the following:
[tex]\frac{134}{z}=374[/tex]find 10-3. write the subtraction fact tow ways?
Answer:
10 - 3 = 7
10 - 7 = 3
Step-by-step explanation:
what is the base and coefficient of the exponential function:
Given an exponential function
[tex]\begin{gathered} y=ab^x \\ \text{ wh}ere\text{ a and b are constants} \\ \text{then a is the coefficient} \\ \text{and b is the base} \end{gathered}[/tex]Therefore,
10 is the coefficient and 1/5 is the base
A cube has a surface area of 253 square inches.What is the area of one face of the cube in sqaure inches.
Answer:
42 1/6 square inches
Step-by-step explanation:
253=6x
x=42 1/6
42 1/6 square inches
:]
Name the transformations happening to the absolute value parent function, f(x) = |x|, in each of the following in the correct order.
is one
the Answer:
Step-by-step explanation:
1
Question Solve for d. d³ = 27
Answer:
d = 3
Step-by-step explanation:
I took different numbers, like 1 and 2, and multiplied them to themselves 3 times, for example, 2 x 2 x 2, but since that answer was wrong, I decided to try a different number, which was 3 and that was correct.
Bob's Golf Palace had a set of 10 golf clubs that were marked on sale for $840. This was a discount of 10% off the original selling price.Step 2 of 4: If the golf clubs cost Bob's Golf Palace $390, what was their profit? Follow the problem-solving process and round youranswer to the nearest cent, if necessary.
Consider that the Bob's Golf Palace bought the set of golf clubs by $390.
Moreover, take into account that the golf clubs were markes on sale for $840.
The profit is only the difference between the marked on sale and the money Bob's Golf Palace payed:
$840 - $390 = $450
Hence, the profit was $450
From a group of 6 people, you randomly select 5 of them.
What is the probability that they are the 5 oldest people in the group?
Give your answer as a fraction
The probability that they are the 5 oldest people in the group is 1/6.
Given that we have a group of 6 people, and we randomly select 5 of them.
We need to find the probability that they are the 5 oldest people in the group.
The total number of ways to select 5 people from a group of 6 people is given by 6C5 which is equal to 6.
This means that there are only 6 possible outcomes when we randomly select 5 people from a group of 6 people.
We know that the 5 oldest people in the group can be selected only in one way.
So, the number of favorable outcomes is 1.
Hence, the probability of selecting the 5 oldest people from the group when 5 people are randomly selected is: Probability = favorable outcomes/total outcomes Probability = 1/6
Therefore, the probability that they are the 5 oldest people in the group is 1/6.
For more questions on probability
https://brainly.com/question/25839839
#SPJ8
What does the fundamental theorem of algebra state about the equation 2x2−x+2 = 0?Question 5 options:The fundamental theorem of algebra tells you that the equation will have two complex roots since the leading coefficient of the equation is 2. The roots arex = 1 ± i7.−−√The fundamental theorem of algebra tells you that the equation will have two complex roots since the degree of the polynomial is 2. The roots are x = 1 ± i7.−−√The fundamental theorem of algebra tells you that the equation will have two complex roots since the degree of the polynomial is 2. The roots arex = 1±i15√4.The fundamental theorem of algebra tells you that the equation will have two complex roots since the leading coefficient of the equation is 2. The roots arex = 1±i15√4.
Given
Equation
[tex]2x^2-x+2=0[/tex]Procedure
The fundamental theorem of algebra tells you that the equation will have two complex roots since the degree of the polynomial is 2. The roots are
[tex]x=\frac{1}{4}\pm\frac{\sqrt[]{15}}{4}[/tex]The discriminant b^2 - 4ac < 0
so, there are two complex roots.
What is the area of the shaded triangle?The area of the shaded triangle is in. 2
The area of the shaded triangle is equal to:
[tex]A=\frac{1}{2}bh[/tex]the base of the shaded triangle is 4 in and the height is 5 in, then:
[tex]\begin{gathered} A=\frac{1}{2}(4)(5) \\ =\frac{1}{2}\cdot20 \\ =10 \end{gathered}[/tex]Therefore the shaded area is 10 squared inches.
Triangle HIJ is similar to triangle KLM. Find the measure of side LM. Round your answer to the nearest tenth if necessary. Figures are not drawn to scale.
Given the following question:
We know the two triangles are similar
We also have the bases of the two triangles which means we can find how bigger the second triangle is, compared to the first triangle.
[tex]\begin{gathered} 5\times3.6=18 \\ 7\times3.6=25.2 \\ 25.2\text{ is already rounded to the nearest tenth} \\ LM=25.2 \end{gathered}[/tex]In order to earn extra money during the summer, Trevor is working as a house painter. The
amount of money he earns depends on the number of houses he paints.
m = the amount of money Trevor earns
h = the number of houses Trevor paints
Which of the variables is independent and which is dependent?
h is the independent variable and m is the
dependent variable
m is the independent variable and h is the
dependent variable
Submit
The correct answer to this question is that m is the dependent variable and h is the independent variable.
The amount of money Trevor earns can be formulated in the form of linear equation. A Linear equation is the one which can be expressed in the form of y = ax + b where y is dependent, and x is independent variable whereas a, b are coefficients. According to question amount of money Trevor earns will depend on the number of houses he paints. If m is the amount of money Trevor earns and h is the number of houses Trevor paints. This can be formulated as
m = hx + b and in this expression, m is dependent variable and h is independent variable as his earning will depend on the number of houses he paints.
Learn more about linear equation at:
brainly.com/question/28307569
#SPJ9
Using SSS, SAS, ASA, & AAS WITH CONGRUENT TRIANGLES For each problem below, state each of the following: a ) state the congruent parts b )state how the triangles are congruent c ) state the congruence
Given two triangles, ADB and CBD
So,
1. the measure of < D = the measure of angle < B
2. CB = AD
3. BD = DB
so, the triangle ADB is congruent to the triangle CBD by SAS [ side - angle - side ]
So, the corresponding parts are congruent :
So,
1. the measure of angle A = the measure of angle C
2. the measure of angle B = the measure of angle D
3. AB = CD
which of the following equations would not contain the point (4,12)?
A. y=1/2x+8 B. y= -2x+20
Answer:
A is the answer :))))))))))))))))))
An investment firm invested in two companies last year. They invested $12,000 in Company A and made a profit of 14%. They
invested $8000 in Company B and made a profit of 21%.
Answer the questions below. Do not do any rounding.
(a) What was the investment firm's total profit?
$0
(b) What was the percent profit for their total investment?
The investment firm's total profit is $ 3360 and the percent profit for their total investment is 16.8%.
How to calculate percentage of a situation?
A value or ratio that may be stated as a fraction of 100 is referred to as a percentage in mathematics. If we need to calculate a percentage of a number, we should divide it by its entirety and then multiply it by 100. The proportion therefore refers to a component per hundred. Per 100 is what the word percent means. The letter "%" stands for it. There is no dimension to percentages. As a result, it is known as a dimensionless number. When we say a number is 50% of anything, we mean that it is 50% of everything.
Formula for percentages: (Value/Total value) * 100
Given, amount invested in company A = $ 12,000
Amount invested in company B = $ 8000
Profit earned by company A = 14%
Profit earned by company B = 21%
Amount in profit earned from company A = (12000*14)/100 = $ 1680
Amount in profit earned from company B = (8000*21)/100 = $ 1680
Therefore total profit of the investment firm = $ (1680 + 1680) = $ 3360
Thus, the investment firm's total profit is $ 3360.
Now, percentage profit of total investment = (3360/20000)*100 = 16.8%, using available literature and formula.
Thus, the percent profit for their total investment is 16.8%
To learn more about this, tap on the link below:
https://brainly.com/question/843074
#SPJ9
Could you provide a step by step resolution for this question?
Given:
Angle A = 120 degrees
Side opposite angle C = 150 meters
Side opposite angle B = 275 meters
Find:
Angle B
Solution:
Since we have two sides given and an included angle, we can use cosine law.
Let's look for the length of the side opposite Angle A first.
[tex]a^2=b^2+c^2-2bc\cos A[/tex]where a = length of the side opposite Angle A or side BC
b = side opposite Angle B or Side AC
c = side opposite Angle C or Side AB
A = Angle A
Since we already have the data above, let's plug it in to the formula we have.
[tex]a^2=275^2+150^2-2(275)(150)\cos 120[/tex]Then, solve a.
[tex]\begin{gathered} a^2=75,625+22,500-82,500(-0.5) \\ a^2=98,125+41,250 \\ a^2=139,375 \\ \sqrt[]{a^2}=\sqrt[]{139,375} \\ a\approx373.3296\approx373.33 \end{gathered}[/tex]Hence, the length of side opposite a or Side BC is approximately 373.33 meters.
Now, to solve for Angle B, we can use the sine law.
[tex]\frac{\sin A}{a}=\frac{\sin B}{b}[/tex]Let's plug in the value of Angle A, side BC or a, and side AC or b to the formula.
[tex]\frac{\sin120}{373.3296}=\frac{\sin B}{275}[/tex]Then, solve for Angle B.
[tex]\begin{gathered} \sin B=\frac{275\sin 120}{373.3296} \\ \sin B=0.6379268552 \\ B=\sin ^{-1}0.6379268552 \\ B\approx39.64 \end{gathered}[/tex]Therefore, the bearing of ship C from ship B is approximately 40 degrees. (rounded off to the nearest degree)
How many 1/4 pound hamburgers could be made from 5 1/2 pounds of hamburger meat?
Given:
Total amount of hamburger meat = 5½ pounds
Let's find how many ¼ pound hamburgers could be made from 5½ pounds of hamburger meat.
To find how many pound hamburger could be made divide 5½ by ¼.
Thus, we have:
[tex]5\frac{1}{2}\div\frac{1}{4}[/tex]To perform the division, take the following steps:
Step 1:
Convert the mixed fraction to improper fraction
[tex]\frac{11}{2}\div\frac{1}{4}[/tex]Step 2:
Flip the fraction on the right and change the division symbol to multiplication
[tex]\begin{gathered} \frac{11}{2}\ast\frac{4}{1} \\ \\ =\frac{11\ast4}{2\ast1} \\ \\ =\frac{44}{2} \\ \\ =22 \end{gathered}[/tex]Therefore, 22 of ¼ pound of hamburger could be made from 5½ pounds of hamburger meat.
ANSWER:
22
Solve this inequality
[tex]\boxed{ \large\displaystyle\text{$\begin{gathered}\sf \bf{-8\leq 10-2x < 28 } \end{gathered}$} }[/tex]
Separate the inequality compound in the inequality system.
[tex]\boxed{\large\displaystyle\text{$\begin{gathered}\sf \bf{{\left\{ \begin{array}{r}10-2x\geq -8 \\ 10-2x < 28 \ \end{array} \right.} } \end{gathered}$} }[/tex]
We solve to: 10 - 2x < 28Order the unknown terms to the left side of the equation.[tex]\boxed{\bf{-2x < 28-10 }}[/tex]
Calculate the sum or difference.
[tex]\boxed{\bf{-2x < 18 }}[/tex]
Divide both sides of the equation by the coefficient of the invariable.[tex]\boxed{\bf{x > -\frac{18}{2} }}[/tex]
Clear the common factor
[tex]\boxed{\bf{x > -9} }}[/tex]
We solve to: 10 - 2x ≥ -8Order the unknown terms to the left side of the equation.
[tex]\boxed{\bf{-2x\geq -8-10 }}[/tex]
Calculate the sum or difference.
[tex]\boxed{\bf{-2x\geq -18 }}[/tex]
Divide both sides of the equation by the coefficient of the invariable.
[tex]\boxed{\bf{x\leq \frac{-18}{-2} }}[/tex]
Determine the sign of multiplication and division.
[tex]\boxed{\bf{x\leq \frac{18}{2} }}[/tex]
Clear the common factor
[tex]\boxed{\bf{x\leq 9}}[/tex]
[tex]\boxed{ \large\displaystyle\text{$\begin{gathered}\sf \bf{x > -9 \ and \ x\leq 9 } \end{gathered}$} }[/tex]
We find the intersection.
Answer = [tex]\boxed{ \large\displaystyle\text{$\begin{gathered}\sf \bf{-9 < x\leq 9 } \end{gathered}$} }[/tex]
Alternative forms: x ∈ (-9, 9]hello i have a upcoming test and want to know how to solve this
Expression given:
[tex]g>1[/tex]To know how to graph the given expression, it is easier if we determine what it means in words. In this case, this expression means all the values above one (without including one).
We know that one is not included as it has the sing ">", if the value were included, then it would have the sing "≥" or "≤".
This is important because when you are graphing, a discontinuous line is drawn for values not included, and a continuous one for included values.
Now, we would have to evaluate if it is the independent variable (generally called x), or the dependent variable (generally called y).
Assuming that g is the dependent variable, then the graph would be like this:
However, if the variable was de independent variable, then it would look like this:
We have to note that both graphs go from 1 to bigger values.