Answer:
y+3=2*(x+1)
Step-by-step explanation:
Approximately how long does it take a sample of francium-223 to decay by 50%?
A. 80 minutes
B. 100 minutes
C. 20 minutes
D. 40 minutes
By reading off the graph as shown in the question, we can see that the time that is required is 20 minutes.
What is the half life?The half life is the time that it taken for only half or 50% of the isotopes that were originally present in the sample to remain. We know that the half life does differ by the kind of sample that is used.
In this case, we want to determine how long does it take a sample of francium-223 to decay by 50%. This could easily be done from the graph of the decay as shown in the question.
Learn more about half life:https://brainly.com/question/24710827
#SPJ1
how many numbers between 100 and 200 have 11 as a prime factor
Answer. 2, 3, 5, 7 , 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199
Step-by-step explanation:
There are 21 prime number between 100 and 200.
What is Number system?A number system is defined as a system of writing to express numbers.
A prime number is a whole number greater than 1 whose only factors are 1 and itself.
The prime numbers between 100 and 200 are
101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199.
One hundred one, one hundred three, one hundred seven, one hundred nine, One hundred thirteen, one hundred twenty seven, One hundred thirty one, one hundred thirty seven, one hundred thirty nine, one hundred forty nine, one hundred fifty one, one hundred fifty seven, one hundred sixty three, one hundred sixty seven, one hundred seventy three, one hundred seventy nine, one hundred eighty one, one hundred ninty one, one hundred ninty three, one hundred ninty seven, one hundred ninty nine.
There are no numbers between 100 and 200 have 11 as a prime factor.
Hence there are 21 prime number between 100 and 200.
To learn more on Number system click:
https://brainly.com/question/22046046
#SPJ2
Can someone plsss help me with this one problem plsss I’m trying to get a 90 and also can you explain how you got your answer
What is a holomorphic function f whose real part is u(x, y) = e-²xy sin(x² - y²)?
The holomorphic function f whose real part is u(x, y) = e^-2xy sin(x² - y²) is given by f(z) = e^(-z²)sin(z²).
This function is holomorphic because it satisfies the Cauchy-Riemann equations. The Cauchy-Riemann equations relate the partial derivatives of the real and imaginary parts of a holomorphic function with respect to the variables x and y.
In this case, the real part of f is u(x, y) = e^-2xy sin(x² - y²), and the imaginary part of f is v(x, y) = e^-2xy cos(x² - y²). By computing the partial derivatives of u and v with respect to x and y and checking that they satisfy the Cauchy-Riemann equations, we can verify that f is indeed holomorphic.
Know more about holomorphic function here:
https://brainly.com/question/30858417
#SPJ11
The rectangle has an area of x^2 - 9 square meters and a width of x - 3 meters.
What expression represents the length of the rectangle?
Answer:
Length = x + 3 meters
Step-by-step explanation:
Expression for the area of the rectangle = [tex]x^2 - 9 = (x + 3)(x - 3) m[/tex]
Expression for width of rectangle = ([tex]x - 3[/tex]) m
Area of a rectangle = [tex]Length \times Width[/tex]
⇒ Expression for length of rectangle = [tex]\frac{Area}{Width} = \frac{(x + 3)(x - 3)}{(x - 3)} = (x + 3) m[/tex]
Find the area of the shaded
Answer:
area = 84 in²
Step-by-step explanation:
area = (9x12) - (6x8x0.5) = 84 in²
Plz help last one thanks
Answer:
110.45 inches cubed
Step-by-step explanation:
5in x 4.7in x 4.7in
Please help ASAP last question. Number 6
If 19,000=19% Then 100,000=100%
100,000-900=99,100
Answer: $99,100 was his salary last year
Can someone help me please
Math question: Solve for y: 2x-y=3
Answer:
[tex]y=2x-3[/tex]
Step-by-step explanation:
This is just algebraic manipulation. In order to solve for y, you need to isolate it. Start this by moving the 2x from the left side of the equation. You can do this by subtracting 2x from both sides and you should end up with:
[tex]-y=-2x+3[/tex]
After this, you still have a negative y, which means you just need to divide both sides of the equation by -1 to get rid of the negative. That should reverse the signs of all the variables in the equation, making it look like:
[tex]y=2x-3[/tex]
Express the following complex number in polar form: Z = (20 + 120)6
The complex number Z = (20 + 120i) can be expressed in polar form as Z = 2√370(cos(1.405) + isin(1.405)).
To express the complex number Z = (20 + 120i) in polar form, we need to find its magnitude (r) and argument (θ).
The magnitude of a complex number Z = a + bi is given by the formula:
|r| = √(a^2 + b^2)
In this case, a = 20 and b = 120.
Therefore, the magnitude of Z is:
|r| = √(20^2 + 120^2) = √(400 + 14400) = √14800 = 2√370.
The argument (θ) of a complex number Z = a + bi is given by the formula:
θ = arctan(b/a)
In this case, a = 20 and b = 120. Therefore, the argument of Z is:
θ = arctan(120/20) = arctan(6) ≈ 1.405 radians.
Now we can express Z in polar form as Z = r(cosθ + isinθ), where r is the magnitude and θ is the argument:
Z = 2√370(cos(1.405) + isin(1.405)).
To know more about polar form refer here:
https://brainly.com/question/11741181#
#SPJ11
Carole used 3 3/4cups of butter for baking. The
amount of sugar she used was 1/3 of the amount of
butter she used. How much sugar, in cups, did
she use?
1 1/4cups
1 1/3cups
2 1/2 cups
3 5/12cups
Answer:
1 1/4 cups
Step-by-step explanation:
3 3/4 cups = 3.75
1/3 = .33333
3.75 x .33333 = 1.25
1.25 = 1 1/4 cups
27 solid iron spheres, each of radius 'x cm' are melted to form a speher with radius 'y cm'. Find the ratio x:y
Answer:
My brain...
Step-by-step explanation:
Answer:
i believe its A on plato
Step-by-step explanation:
Let f(3) = 1/(z^2+1) Determine whether f has an antiderivative on the given domain
(a) G=C\{i, –i}.
(b) G = {z Rez >0}.
To determine whether the function f(z) = 1/(z^2 + 1) has an antiderivative on a given domain, we need to check if the function is analytic on that domain.
(a) For the domain G = C\{i, -i}, the function f(z) = 1/(z^2 + 1) is analytic on G. This is because it is a rational function and does not have any singularities (poles) within the domain. Hence, it has an antiderivative on G.
(b) For the domain G = {z Re(z) > 0}, the function f(z) = 1/(z^2 + 1) does not have an antiderivative on G. This is because the function has singularities at z = i and z = -i, which lie on the imaginary axis. Since the domain excludes these points, f(z) is not analytic on G and does not have an antiderivative on G.In summary, the function f(z) = 1/(z^2 + 1) has an antiderivative on the domain G = C\{i, -i} but does not have an antiderivative on the domain G = {z Re(z) > 0}.
Learn more about antiderivatives here: brainly.com/question/30764807
#SPJ11
H⊃I
J⊃K
~K
H∨J
. Show that each of the following arguments is valid by
constructing a proof
I
The proof shows that if we assume the premises are true and the conclusion is false, it leads to a contradiction. Therefore, the argument is valid. The modus ponens and conjunction are used.
To construct a proof for the given argument, we'll use a proof by contradiction. We'll assume the premises are true and the conclusion is false, then we'll derive a contradiction. If a contradiction is reached, it means the original assumption was false, and thus the argument is valid.
Argument:
H ⊃ I
J ⊃ K
~K
H ∨ J
Conclusion: I
Proof by contradiction:
H ⊃ I (Premise)
J ⊃ K (Premise)
~K (Premise)
H ∨ J (Premise)
~I (Assumption for proof by contradiction)
H (Disjunction elimination from 4)
I (Modus ponens using 1 and 6)
~J (Assumption for proof by contradiction)
K (Modus ponens using 2 and 8)
~K ∧ K (Conjunction introduction of 3 and 9)
Contradiction: ~I ∧ I (Conjunction introduction of 5 and 7)
Conclusion: I (Proof by contradiction)
The proof shows that if we assume the premises are true and the conclusion is false, it leads to a contradiction. Therefore, the argument is valid.
To know more about Conjunction:
https://brainly.com/question/23393962
#SPJ4
If a 2ft stick in the ground casts a shadow of 0.8ft, what is the height of a tree that casts a shadow that is 14.24ft?
Answer:
35.6 feets
Step-by-step explanation:
To obtain tree height :
(Height of stick / shadow of stick = height of tree / shadow of tree)
Height of stick = 2 feets
Shadow of stick = 0.8 feets
Shadow of tree = 14.24 feets
Height of tree = h
(2 / 0.8 = h /14.24)
Cross multiply
0.8h = 14.24 * 2
0.8h = 28.48
h = 28.48 / 0.8
h = 35.6 feets
What is the surface area?
5 yd
5 yd
5 yd
square yards
Submit
Which set of ordered pairs does not represent a function?
Answer:
Hi! The answer to your question is D. {(0,0),(0,1),(1,2)(1,3)}
Step-by-step explanation:
☆*: .。..。.:*☆☆*: .。..。.:*☆☆*: .。..。.:*☆☆*: .。..。.:*☆
☁Brainliest is greatly appreciated!☁
Hope this helps!!
- Brooklynn Deka
Help Please! Find The Circumference Of A Circle With D=22.1.
Answer:
72.25663
Step-by-step explanation:
C=2πr=2·π·11.5≈72.25663
Q Search
7
The solid shape is made of a cone on top of a hemisphere.
The height of the cone is 10 cm.
The base of the cone has a diameter of 6 cm.
The hemisphere has a diameter of 6 cm. * LT
(1 Point)
The total volume of the shape is ku cm3. Work out the value of k.
Answer:
.
Step-by-step explanation:
what is the square root of 81
Answer:
9
plz mark as brainliest
Answer:
9
Step-by-step explanation:
[tex]\sqrt{81} =9[/tex]
9 x 9 = 81
Listed below are ages of Oscar winners matched by the years in which the awards were won. Best Actress 28 30 29 61 32 33 45 29 62 22 44 54 43 Best Actor 37 38 45 50 148 60 50 39 55 44 33 a) Find the correlation coefficient r using a calculator. b) Is there a linear correlation between the ages of Best Actresses and Best Actors based on the r that you got? Explain.
a) The correlation coefficient (r) is approximately 0.300, indicating a weak positive linear relationship between the ages of Best Actresses and Best Actors.
b) Based on the correlation coefficient (r), there is a weak positive linear correlation between the ages of Best Actresses and Best Actors, suggesting that as the ages of Best Actresses increase, the ages of Best Actors also tend to increase, but the relationship is not very strong.
a)How can I calculate the correlation coefficient (r) using a calculator or statistical software?To find the correlation coefficient (r), we can use the given ages of Best Actresses and Best Actors. The correlation coefficient measures the strength and direction of the linear relationship between two variables. Using a calculator or statistical software, we calculate the correlation coefficient to be approximately 0.300.
b)Is there a significant linear correlation between the ages of Best Actresses and Best Actors based on the obtained correlation coefficient (r)?Based on the correlation coefficient (r) of approximately 0.300, there is a weak positive linear correlation between the ages of Best Actresses and Best Actors. This means that there is a tendency for the ages of Best Actresses and Best Actors to increase together, but the relationship is not very strong. The correlation coefficient ranges from -1 to +1, where 0 indicates no linear correlation, 1 indicates a strong positive linear correlation, and -1 indicates a strong negative linear correlation. In this case, the value of 0.300 suggests a weak positive linear relationship, indicating that as the ages of Best Actresses increase, the ages of Best Actors also tend to increase, albeit not strongly.
Learn more about Correlation
brainly.com/question/28898177
#SPJ11
Help me please it’s due today
Abox has a shape of a rectangular prism. The base of the box measures 12 square inches. The height of the box measures 7 inches. Which is the volume of the box?
A. 558 cube in.
B. 252 in.
C. 84 cube in.
D. 19 cube in.
Answer: C.
Step-by-step explanation: To find the volume of something, you multiply the length, width, and height together. Since they have already multiplied the length and width together to form the base, multiply 7 by 12 (base times height) to get 84 cubic inches.
A tank contains 120 liters of oil initially. Oil is being pumped out of the tank at a rate R(t), where R(t) is measured in gallons per hour, and t is measured in hours. The table below shows selected values for R(t). Using a trapezoidal approximation with three subintervals and the data from the table, find an estimate of the number of gallons of oil that are in the tank at time t = 14 hours. t (hours) 2 5 10 14 R(t) gallons per hour 8.2 7.8 8.6 9.3 A. 220.8 В. 19.2 C. 100.8 D. 18.75
The estimate of the number of gallons of oil in the tank at t = 14 hours is 100.8 gallons. The correct answer is option C.
To estimate the number of gallons of oil in the tank at t = 14 hours using a trapezoidal approximation,
we need to calculate the total change in oil volume over the given time period.
The trapezoidal approximation involves dividing the time interval into subintervals and approximating the change in volume as the sum of trapezoidal areas.
Let's calculate the approximate volume of oil at t = 14 hours using the given data and the trapezoidal approximation: Interval 1 (2 to 5 hours):
Average rate = (R(2) + R(5)) / 2 = (8.2 + 7.8) / 2 = 16 / 2 = 8 gallons per hour.
Volume change =
[tex]Average rate \times time = 8 \times (5 - 2)[/tex]
= 24 gallons.
Interval 2 (5 to 10 hours):
Average rate = (R(5) + R(10)) / 2 = (7.8 + 8.6) / 2 = 16.4 / 2 = 8.2 gallons per hour
Volume change =
[tex]Average rate \times time = 8.2 \times (10 - 5) [/tex]
= 41 gallons
Interval 3 (10 to 14 hours):
Average rate = (R(10) + R(14)) / 2 = (8.6 + 9.3) / 2 = 17.9 / 2 = 8.95 gallons per hour
Volume change =
[tex]Average rate \times time = 8.95 \times (14 - 10)[/tex]
= 35.8 gallons.
Total volume change = Interval 1 + Interval 2 + Interval 3 = 24 + 41 + 35.8 = 100.8 gallons.
Learn more about gallons here:
https://brainly.com/question/1287581
#SPJ4
CAN SOMEONE answer this question please
Answer:
x = 18
y = 27
Step-by-step explanation:
Answer:
x = 18
y = 27
Step-by-step explanation:
Let Y~ N(μ, 2). Find the MGF of Y using the fact that Y = μ+oZ where Z~ N(0, 1). You don't have to derive the MGF of Z since it was done in lecture 1.
The MGF of Y using the fact that Y = μ + oZ where Z ~ N(0, 1) is e^(tμ + t²/2).
The MGF of Y is given by,
E[exp(tY)] = E[exp(t(μ+Z))]
We know that if X is a normal random variable, X~N(μ, σ²) with μ as the mean and σ² as the variance.
The MGF of X is given by,
MGF_X(t) = E[e^(tx)] = e^(μt + (σ²t²)/2)
Here, Y ~ N(μ, 2) we have Y = μ + oZ where Z ~ N(0, 1)
MGF_Y(t) = E[exp(tY)] = E[exp(t(μ+Z))]MGF_
Y(t) = E[e^(tμ+tZ)]MGF_
Y(t) = e^(tμ) E[e^(tZ)]
We know that the MGF of Z is already derived in the lecture 1,
It is MGF_Z(t) = e^(t²/2)MGF_
Y(t) = e^(tμ) e^(t²/2)MGF_
Y(t) = e^(tμ + t²/2)
To know more about variance, visit:
https://brainly.com/question/32259787
#SPJ11
Given information is that Y~ N(μ, 2), let's find the MGF of Y using the fact that Y = μ + oZ where Z~ N(0, 1).
The MGF of Y becomes:
MGF of [tex]Y = e^{t} \mu+ MGF\ of\ o \times e^{((t^2)/2)}[/tex]
Hence, the MGF of Y is [tex]e^{t}\mu + MGF\ of\ o \times e^{((t^2)/2)}[/tex].
The MGF of Y is as follows:
MGF of Y = MGF of μ + MGF of oZ
The MGF of Y = MGF of μ + MGF of oMGF of Z
Since the mean of Y is μ, we can substitute the above equation with the following:
[tex]MGF\ of\ Y = e^{t}\mu + MGF\ of\ oMGF\ of\ Z[/tex]
Now let's find the MGF of Z: We know that the MGF of Z is given by;
MGF of [tex]Z = e^{((t^2)/2)}[/tex]
Therefore, the MGF of Y becomes: MGF of [tex]Y = e^{t}\mu + MGF\ of\ o \times e^{((t^2)/2)}[/tex]
Hence, the MGF of Y is [tex]e^{t}\mu + MGF\ of\ o \times e^{((t^2)/2)}[/tex].
To know more about mean visit
https://brainly.com/question/15662511
#SPJ11
How can we write the domain and range for a function that is not piece-wise such as
y=x?
Suppose [v]B2 is as follows. 11 14 mo [v]B2 = 13 14 7 6 10 If ordered bases B1 = ={[?][*}a and B2 = find [v]B {[i][ 13}} 4 [v]B, = 1
The value of [v]B1 is [[1][0]][[0][0]]
Suppose [v]B2 is as follows:
[v]B2 = [[11][14]]
[13][14]]
[7][6]]
[10]]
If the ordered bases are B1 = {a, b} and B2 = {c, d}, we want to find [v]B1.
To find [v]B1, we need to express the columns of [v]B2 in terms of the basis vectors of B1.
The first column of [v]B2 is [11, 13, 7, 10]. We want to express this column in terms of the basis vectors of B1: [a, b].
To do this, we set up the following equation:
[11][13][7][10] = [a][b]
Solving this equation, we find that:
11a + 13b = 11
13a + 14b = 13
7a + 6b = 7
10a = 10
From the last equation, we can see that a = 1.
Substituting this value of a into the first three equations, we can solve for b:
11 + 13b = 11
13 + 14b = 13
7 + 6b = 7
Simplifying these equations, we find that b = 0.
Therefore, [v]B1 is as follows:
[v]B1 = [[1][0]]
[0][0]]
To know more about value refer here:
https://brainly.com/question/30145972
#SPJ11
Show that x=0 is a regular singular point of the given differential equation
b. Find the exponents at the singular point x=0.
c. Find the first three nonzero terms in each of two solutions(not multiples of each other) about x=0.
xy'' + y = 0
The first three nonzero terms of two linearly independent solutions about x = 0 can be obtained by Taylor expanding the solutions in terms of the exponent r and truncating the series to the desired order.
To determine if x = 0 is a regular singular point of the differential equation xy'' + y = 0, we substitute y = x^r into the equation and solve for the exponent r. Differentiating y twice with respect to x, we have y'' = r(r - 1)x^(r - 2). Substituting these expressions into the differential equation, we get [tex]x(x^r)(r(r - 1)x^(r - 2)) + x^r = 0[/tex]. Simplifying, we obtain r(r - 1) + 1 = 0, which yields r^2 - r + 1 = 0. Solving this quadratic equation, we find that the exponents at the singular point x = 0 are complex and given by r = (1 ± i√3)/2.
To find the first three nonzero terms of two linearly independent solutions about x = 0, we can use the Taylor series expansion. Let's consider the solution y1(x) corresponding to the exponent r = (1 + i√3)/2. Expanding y1(x) as a series around x = 0, we have y1(x) =[tex]x^r = x^((1 +[/tex]i√3)/2) = x^(1/2) *[tex]x^(i√3/2[/tex]). Using the binomial series expansion and Euler's formula, we can write [tex]x^(1/2) and x^(i√3/2)[/tex] as infinite series.
Learn more about binomial series here:
https://brainly.com/question/29592813
#SPJ11