We are given the following multiplication problem.
[tex]\frac{7}{8}\times\frac{9}{8}[/tex]To perform the fractional multiplication, simply multiply the numerators and the denominators
[tex]\frac{7}{8}\times\frac{9}{8}=\frac{7\times9}{8\times8}=\frac{63}{64}[/tex]Therefore, the result of the multiplication is 63/64
Thad needs to buy dirt for his children's playground. The dirt costs $15 per ton, and there is a delivery cost of $12 with each order. What types of numbers are possible in the domain? -All positive rational numbers -All rational numbers greater than 15 -All positive rational numbers less than 12 -All rational numbers
The domain is the set input values, it means the number of tons that can be deliver.
The type of numbers that are possible are the positive rational numbers. This is because you can order 1, 2, 2.5, 1/3 tons but you can not order -6, -4.4 or -0.3 tons.
It means that the type of numbers that are possible for the domain are the possitive rational numbers.
Find
d93 /dx93 *(cos x)
by taking the first few derivatives and observing the pattern that occurs.
d93 /dx93 *(cos x) = - sin x
Now,
d/dx (cos x ) = -Sin x
d2/dx2 (cos x) = - cos x
d3/dx3 (cos x) = sin x
d4/dx4 (cos x) = cos x
d5/dx5 (cos x) = - sin x
d6/dx6 (cos x) = -cos x
The same pattern will repeat for every 6th derivative so ,
Now,
93 = (4 x 23) + 1
Therefore,
d93 /dx93 *(cos x) = - sin x
To know more about Derivative
Refer this link:
https://brainly.com/question/23819325
#SPJ1
Which expression is equivalent to (sin 2θ)(sec2θ)? 2sin θ sin θ tan θ 2tan θ
Answer:
Explanation:
Here, we want to get the expression that is equivalent to the given expression
We have this as follows:
[tex]\begin{gathered} \text{ sec 2}\theta=\text{ }\frac{\sec^2\theta}{2-\sec^2\theta} \\ \\ \sin 2\theta\text{ = 2sin}\theta\cos \theta \end{gathered}[/tex]Now, we can rewrite the overall expression as:
[tex]undefined[/tex]Assume the annual day care cost per child is normally distributed with a mean of $8000 and a standard deviation of $1500. In a random sample of 300 familles, how many pay morethan $6440 annually for day care per child?Of the 300 families, approximately pay more than 56440 annually for day care per child(Round to the nearest whole number as needed.)
Let's begin by listing out the information given to us:
Mean = $8,000, SD = $1,500
In a sample of 300, how many pay more than $6440?
Solve for X. 70 degreeright angle 6solve
ANSWER:
The value of x is 16.49
STEP-BY-STEP EXPLANATION:
We can calculate the value of x by means of the tangent trignometric function, which is the following
[tex]\begin{gathered} \tan \theta=\frac{\text{opposite}}{\text{adjacent}} \\ \theta=70\text{\degree} \\ \text{opposite = x} \\ \text{adjacent = 6} \end{gathered}[/tex]Replacing and solving for x:
[tex]\begin{gathered} \tan 70=\frac{x}{6} \\ x=6\cdot\tan 70 \\ x=16.49 \end{gathered}[/tex]Which equation has a constant of proportionality equal to 1? Choose 1 answer: A y 10 1 11 B y 7 8 3 y = 15 D y = 2
we know that
A relationship between two variables, x, and y, represent a proportional variation if it can be expressed in the form y=kx
where
k is the constan of proportionality
therefore
in this problem
the answer is the option Dy=x
because, the value of k =1
What value of x makes this equation true?x+7------7A. 6B. 8C. 35 D. 42
We have
[tex]\begin{gathered} \frac{x+7}{7}=6 \\ x+7=6\times7 \\ x+7=42 \\ x=42-7 \\ x=35 \end{gathered}[/tex]Option C
Assume that different groups of couples use a particular method of gender selection and each couple gives birth to one baby. This method is designed to increase the likelihood that
each baby will be a girl, but assume that the method has no effect, so the probability of a girl is 0.5. Assume that the groups consist of 18 couples.
Find the expected number of girls in groups of 18 births
Answer:
since the method is deemed to have no effect
which means probability of having a girl child is same as having a boy child which is 0.5
Total births = 18
Therefore, expected number of girls in groups should be equal to = 0.5 × 18 = 9
I hope this is helpful
need help with these parts. both parts use the same table
Given:
[tex]f(x)=h(2x)[/tex]And the values in the table.
Required:
The equation of a normal line to f at x=3.
Explanation:
The equation of the line that passes through from point (x,y) and has slope m
is given by the formula
[tex]y-y_1=m(x-x_1)[/tex]From the table at x=3, f(x)=h(2x)
that is f(3)= h(6)=9
And the slope from the table at x=3 is 1/2.
Now the equation of the line is:
[tex]\begin{gathered} y-9=\frac{1}{2}(x-3) \\ 2(y-9)=(x-3) \\ 2y-18=x-3 \\ x-2y=-15 \end{gathered}[/tex]Final answer:
Thus the equation of the normal line is
[tex]x-2y+15=0[/tex]If one of the flights is randomly selected find the probability that the flight silicon Rosa United Airlines flight given that it was on time.
Total of flights on time: 22 + 53 = 75
probability that the flight selected was silicon Rosa United Airlines:
53/75 = 0.71 = 71%
what is this answer i need it asap!
Answer:
The answer is 3.375
Step-by-step explanation:
You just multiply 1.5 by itself 3 times
12+212+25,432*5,000+
Answer:
127160224
or use a calculator
QUESTION IN ATTACHMENTS
Answer:
C.
Step-by-step explanation:
Since you are missing a side, use the Pythagorean Theorem:
[tex]a^{2}+b^{2}=c^{2}\\ 5^{2}+8^{2}=c^{2}\\ 25+64=c^{2}\\ 89=c^{2}\\ \sqrt{89}=c Answer[/tex]
Answer:
the answer is C.
[tex] \sqrt{89} [/tex]
Find the critical numbers of the function. (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.)
h(x) = x−1⁄3 (x − 12)
The critical value of the given function is = -11/2
The x values for which f'(x) = 0 are the crucial values of a function f(x).
The function in this quandary is:
h(x) = x−1⁄3 (x − 12)
The derivative is discovered using the quotient rule as follows:
[tex]h(x) = \frac{x - 1}{3(x - 12)} \\\\h'(x) = \frac{ (x-1) (3x - 36)' - (x - 1)'(3x - 36)}{(3x - 36)^{2} }\\\\h'(x) = \frac{ (x-1) (3) - (-1)(3x - 36)}{(3x - 36)^{2} }\\\\On equating it to 0\\\\\frac{ (x-1) (3) + 1(3x - 36)}{(3x - 36)^{2} } = 0\\\\3x - 3 + 3x + 36 = 0\\\\6x + 33 = 0\\\\x = \frac{-11}{2}[/tex]
To learn more about critical numbers from given link
https://brainly.com/question/12958088
#SPJ9
In the diagram below, the circle has a radius of 25 inches. the area of the unshaded is 500pi in^2Determine and state the degree measure of angle Q, the central angle of the shaded sect
1) In this question, we are going to make use of the formula for the area of that sector, to find the central angle.
2) So, let's write it out an expression involving the area of a circle, the unshaded area, and the shaded one and then plug into that the given data:
[tex]\begin{gathered} A=\frac{\alpha}{360^{\circ}}\times\pi r^2 \\ A_{Unshaded}+A_{shaded}=A_{Circle} \\ 500\pi+\frac{\alpha}{360}\times\pi r^2=\pi r^2 \\ \\ 500\pi+\frac{α}{360}\pi25^2=25^2\pi \\ \\ 500\pi+\frac{125\piα}{72}=625\pi \\ \\ 500\pi +\frac{125\pi α}{72}-500\pi =625\pi -500\pi \\ \\ \frac{125\pi α}{72}=125\pi \\ \\ \frac{72\times \:125\pi α}{72}=72\times \:125\pi \\ \\ \frac{125\pi α}{125\pi }=\frac{9000\pi }{125\pi } \\ \\ α=72^{\circ} \\ \\ \end{gathered}[/tex]Thus, the centra angle of that shaded area is 72º
please answer this anybody
Answer:
5 is a vertical angle. 1 is a vertical angle. 3 is a corresponding angle.
Step-by-step explanation:
Let me know if i got anything wrong!
Evaluate the expression below using the properties of operations. -36 ÷ 1/4 • (-1/8) • (-3) ÷ 6
Answer:
-9
Step-by-step explanation:
We are working with multiplications and divisions, which have no precedence over each other. So we can do the operations in order. It is important to remind that in these operations, if two numbers have different signals, the result of the operation is negative, otherwise, positive.
-36 ÷ 1/4
Different signals, so the result will be negative
[tex]\frac{-36}{\frac{1}{4}}=-36\ast\frac{4}{1}=-36\ast4=-144[/tex]-36 ÷ 1/4 • (-1/8) = -144 * (-1/8)
Same signal, so positive
[tex]-144\ast(-\frac{1}{8})=\frac{144}{8}=18[/tex]-36 ÷ 1/4 • (-1/8) • (-3) = 18 * (-3) = -54
-36 ÷ 1/4 • (-1/8) • (-3) ÷ 6 = -54 ÷ 6 = -9
- The Freedom Tower in New York City is 1776 feet
tall. The equation f(t) = -16t² + 1776 models the
height f(t) (in feet) of an object t seconds after it is
dropped from the top of the tower.
a. After how many seconds will the object hit the
ground? Round your answer to the nearest
hundredth of a second.
b. What is the height of the object 3 seconds after
it has been dropped from the top of the tower?
A golf ball is hit from the ground, and its height
can be modeled by the equation h(t) ==16t² + 128t,
where h(t) represents the height (in feet) of the ball
t seconds after contact. What will the maximum
height of the ball be?
WILL GIVE BRAINLIEST PLSSS
Part a: time when object hit the ground is 10.5 sec.
Part b: The height of the object 3 seconds is 1632 ft.
What is termed as the equation of motion?A mathematical formula which describes this same position, velocity, as well as acceleration of a body in relation to a specific frame of reference is known as an equation of motion. The equation of motion is second law, that also states that the force that acts on an object is equivalent to the mass m of a body multiplied by the acceleration an of its center of mass.For the given question;
The equation that models the height f(t) (in feet) of an object t seconds after it is when dropped from the top of the tower is,
f(t) = -16t² + 1776
Part a: time when object hit the ground.
When the object hit the ground, height will be zero.
Put f(t) = 0.
0 = -16t² + 1776
-16t² = -1776
t² = 111
t = 10.5 sec.
The, time after which the object will hit the ground is 10.5 sec.
Part b: The height of the object 3 seconds;
Put t = 3 in the equation.
f(3) = -16(3)² + 1776
f(3) = 1632 ft
The height of the object after 3 sec will be 1632 ft.
Thus, the values for the object hitting the ground are found.
To know more about the equation of motion, here
https://brainly.com/question/28500560
#SPJ13
You are trying to memorize a speech for your public speaking class. After 1 day, you memorized 200 words. Each of the following days, you memorized an additional 30 words.
Use the given information to write a linear equation in point-slope form. Then use the equation to find the number of words will you have memorized after 8 days.
__words
can someone help me find the formule pls
The linear equation in point-slope form of the given condition is y = 30x + 170. The number of words after 8 days will be 410.
What is a linear function?A straight line on the coordinate plane is represented by a linear function.
A linear function always has the same and constant slope.
The formula for a linear function is f(x) = ax + b, where a and b are real values.
Let's represent the number of days by x and the number of words by y.
At day 1 (x = 1) ⇒ Number of words (y = 200)
At day 1 (x = 2) ⇒ Number of words (y = 230)
The point-slope form of a linear equation is given as,
y = mx + c
Where m is the slope, while c is the y-intercept.
Substitute,(1,200) in y = mx + c
200 = m(1) + c
Now slope m = (230 - 200)/(2 - 1) = 30
200 = 30(1) + c
c = 170
Therefore, the equation become,
y = 30x + 170
The number of words after 8 days will be,
y = 30(8) + 170 = 410
Hence "The linear equation in point-slope form of the given condition is y = 30x + 170. The number of words after 8 days will be 410".
For more about the linear function,
brainly.com/question/21107621
#SPJ1
what is the correct order of operations for the expression below
Given:
[tex](7-4)\div(5-2)[/tex]Required:
To choose the correct order of operations for the given expression.
Explanation:
Consider the given exprsesion
[tex](7-4)\div(5-2)[/tex]Here subtract 4 from 7, subtract 2 from 5, and divide the first difference by the second.
Final Answer:
Subtract 4 from 7, subtract 2 from 5, and divide the first difference by the second.
A circle has a diameter of 24 centimeters. Central angle FOG is drawn, determining an arc FG. The radian measure of angle FOG is 3/4 What is the length of arc FG in centimeters?16 cm9 cm32 cm18 cm
Answer:
9 cm
Explanation:
We are given the following information:
Diameter = 24 cm
Angle FOG = 3/4 rad
The formula for calculating arc length is written below:
[tex]\begin{gathered} L=\theta\times r \\ where\colon \\ \theta=central\text{ angle of }arc,\text{ in }rad \\ r=radius \\ r=\frac{\text{Diameter}}{2}=\frac{24}{2}=12cm \\ \theta=\frac{3}{4}rad \\ \text{Substitute these into the formula, we have:} \\ L=\frac{3}{4}\times12 \\ L=\frac{3\times12}{4} \\ L=9cm \\ \\ \therefore L=9cm \end{gathered}[/tex]Therefore, the arc length is 9 cm
How many solutions does this system of equations have?
y = x2 + x + 3
y = -2x - 5
Answer: (x, y) = (-8/5, -9/5)
For what values of m does the graph of y = 3x² + 7x + m have two x-intercepts?
0 m> 25
O
Om<25
3
49
Om 12
49
m> 12
The graph of y = 3x² + 7x + m will have two x-intercepts if m < 49/12.
The given function is,
y = 3x² + 7x + m
Having two x-intercepts means that the value of y should be 0.
So, we can write,
3x² + 7x + m = 0
Now, this has become a quadratic equation and it will have two zeroes according to the question,
As we know, the condition of quadratic to have two different values of x is,
0 < √(b²-4ac)
Where,
a = 3
b = 7
c =m
Putting all the values,
√(7²-4(3)(m)) > 0
Squaring both sides,
7²-4(3)(m) > 0
49-12m > 0
49/12 > m.
So, the graph will have two intercepts if m < 49/12.
To know more about Quadratic equation, visit,
https://brainly.com/question/28038123
#SPJ9
Consider the rectangle with width 20 in and length 26 in, write a ratio of the width to length
The ratio of the width of the rectangle to the length of the rectangle is 10/13
We are provided with the rectangle. The dimensions of the rectangle are mentioned below;
Width of rectangle = 20
Length of rectangle = 26
We were asked to calculate the ratio of width of the rectangle to the length of the rectangle. So, to calculate the ratio of width of the rectangle to the length of the rectangle we need to divide the width of rectangle to the length of the rectangle as mentioned below;
( Width of rectangle/Length of rectangle ) = 20 / 26
( Width of rectangle/Length of rectangle ) = 10/13
So, we can finally conclude that the ratio of width of the rectangle to the length of the rectangle is 10/13 .
To know more about Problems related to Ratio refer to the link:
https://brainly.com/question/26460724
#SPJ1
Put in simplest radical form: -√3 + 4√3
Answer:
3√3
Step-by-step explanation:
You want the simplest radical form of -√3 + 4√3.
Like termsWe can consider these "like terms" in the sense that each is an integer multiple of √3. As such, they can be combined by combining coefficients.
-√3 + 4√3 = (-1 +4)√3 = 3√3
Solve for brainliest and 20 points
Answer:
x = 50
Step-by-step explanation:
50 x 3 - 15 = 135
an octagon has 8 sides & 8 angles. 135 x 8 = 1,080 which is the amount of degrees an octagon equals.
Answer:
50
Step-by-step explanation:
Total angles in an octagon is 1080
Because there are 8 sides you must divide 1080/8 to find the angle of one side ... 1080/8 = 135
3x-15=135
1) 135+15 = 150
2)150/3=50
Hope this helps, have a great day!
Arc Length S. Central Angle 0 82 miles. 135°Find the radius and radians r of a circle with an arc length s and a central angle 0.
Central angle of 135 degrees = 135 (Pi/180) = (3/4)Pi = 2.356 radians
First answer:
Central angle = 2.356 radians
Arc lenght = 2 Pi r (angle/360), in this case:
82 = 2 Pi r (135/360) = 2 Pi r (3/8) = (3/4) Pi r
82 = (3/4) Pi r
r = 82/(3/4)Pi = 82/2.35619449
r = 34.80188089
Second answer:
Radius = 34.8 miles
4. A student asks, “If the average income of 10 people is $10,000 and one person gets a raise of $10,000, is the median or the mean changed and, if so, by how much?
Since we don't know the specific income of each person in the sample, we don't know for sure if the median will change. Nevertheless, the mean will surely raise.
Since the current average income is $10,000, if one of them gets a raise of $10,000, then the sum of all incomes would be $100,000+$10,000=$110,000. And the new average income will be:
[tex]\frac{110,000}{10}=11,000[/tex]Then, the mean increases by $1,000, and we can't say anything about the median.
[tex] 4 ^{ \frac{1}{3} } \times 4 ^{ \frac{1}{5} } = [/tex]pls answer this
The given Expression is :
[tex]4^{\frac{1}{3}}\cdot4^{\frac{1}{5}}[/tex]From the property of exponents
If the base value of the exponents are same then during the process of multiplication powers will add up.
Since in the given expression 4 is the base value on both base of the exponents
Thus, base value are equal
The powers will add up:
[tex]\begin{gathered} 4^{\frac{1}{3}}\cdot4^{\frac{1}{5}} \\ 4^{\frac{1}{3}+\frac{1}{5}} \end{gathered}[/tex]Simplify the farction of the exponents :
[tex]\begin{gathered} \frac{1}{3}+\frac{1}{5} \\ \text{Taking LCM of the 3 \& 5} \\ \frac{1}{3}+\frac{1}{5}=\frac{5+3}{15} \\ \frac{1}{3}+\frac{1}{5}=\frac{8}{15} \end{gathered}[/tex]So, the value of the given expression will be :
[tex]\begin{gathered} 4^{\frac{1}{3}}\cdot4^{\frac{1}{5}}=4^{\frac{1}{3}+\frac{1}{5}} \\ 4^{\frac{1}{3}}\cdot4^{\frac{1}{5}}=4^{\frac{8}{15}} \end{gathered}[/tex]Answer : 4 ^8/15
How long do people typically spend traveling to work? The answer may depend on where they live. Here are the travel times in minutes of 20 randomly chosen workers in New York state
Based on the information given, the standard deviation for the observation is: 23.802698 or approximately 24.
The standard deviation in statistics is a measure of the degree of variation or dispersion in a set of values. A low standard deviation implies that the values are close to the set's mean, whereas a high standard deviation shows that the values are spread out over a larger range.
The formula for Standard deviation is given as:
σ[tex]= \sqrt{\frac{1}{N-1} \sum_{i=1}^N (x_i - \overline{x})^2} .[/tex]
Where
σ = population standard deviation
[tex]\bar x[/tex] = mean
x = each value of the population
n = number of observation
Note that mean ([tex]\bar x[/tex]) = [tex]\( \frac{1}{n} \sum_{i=i}^{n} x_{i} \),[/tex]
[tex]\bar x[/tex] = (5+10+10+10+10+12+15+20+20+25+30+30+40+40+60+60+65+70+70+70)/20
= 33.6
Hence the standard deviation for travel times for these 20 New York workers is:
Standard Deviation = [tex]\sqrt{\frac{\sum(x_{1} - {\bar x})^{2} }{n-1} }[/tex]
= √ [(5-33.6)²+ (10 - 33.6)² + .... + (70 - 33.6)²]/(20-1)]
Standard Deviation = √(10764.8)/(20-1)
SD = √(10764.8/19)
SD = √566.56842
SD = 23.802698
Learn more about Standard Deviation:
https://brainly.com/question/475676
#SPJ1
Full Question:
How long do people spend traveling to work? The answer may depend on where they live here are the travel times in minutes for 20 workers in New York chosen at random by the census bureau:
5 10 10 10 10 12 15 20 20 25 30 30 40 40 60 60 65 70 70 70
What is the standard deviation for travel time for these 20 New York state workers?