a 63.0 kg skier starts from rest at the top of a ski slope 65.0 m high. (a) If friction forces do 10.9 kJ of work on her as she descends, how fast is she going at the bottom of the slope? (b) Now moving horizontally, the skier crosses a patch of soft snow where 0.21. If the patch is 65.0 m wide and the average force of air resistance on the skier is 180 N, how fast is she going after crossing the patch? (c) The skier hits a snowdrift and penetrates 3.0 m into it before coming to a stop. What is the average force exerted on her by the snowdrift as it stops her?

Answers

Answer 1

A) Speed of the skier at the bottom of the slope is 30.1 m/sec. B) She is going to cross the patch with velocity  11.4 m/s. C) The average force  exerted on the snowdrift is  9,500 N.

a)

The total mechanical energy of the skier at the top of the slope is given by:

E = mgh

where m is the mass of the skier, g is the acceleration due to gravity, and h is the height of the slope.

Substituting the given values, we get:

E = (63.0 kg)(9.81 m/s²)(65.0 m) = 40,515 J

The work done by friction forces on the skier as she descends is given by:

W = 10.9 kJ = 10,900 J

By the work-energy principle, we know that:

W = ΔE

where ΔE is the change in mechanical energy of the skier.

Therefore:

ΔE =[tex]E_f - E_i = W[/tex]

where[tex]E_f[/tex] is the final mechanical energy of the skier at the bottom of the slope and [tex]E_i[/tex] is her initial mechanical energy at the top of the slope.

Solving for [tex]E_f[/tex] , we get:

[tex]E_f = E_i + W = 51,415 J[/tex]

At the bottom of the slope, all of the initial potential energy has been converted to kinetic energy. Therefore:

[tex]E_f[/tex] = (1/2)mv²

where v is the speed of the skier at the bottom of the slope.

Substituting the given values and solving for v, we get:

v = √(2[tex]E_f[/tex] /m) = 30.1 m/s

b)

The skier is moving horizontally across a patch of soft snow where the coefficient of kinetic friction is 0.21. The average force of air resistance on the skier is 180 N.

The net force acting on the skier is given by:

[tex]F_{net} = F_{air} + F_{friction}[/tex]

where[tex]F_{air}[/tex] is the force of air resistance and [tex]F_{friction}[/tex] is the force of friction.

The force of friction is given by:

[tex]F_{friction}[/tex]= μmg

where μ is the coefficient of kinetic friction, m is the mass of the skier, and g is the acceleration due to gravity.

Substituting the given values, we get:

[tex]F_{friction}[/tex]= (0.21)(63.0 kg)(9.81 m/s²) = 130.9 N

Therefore:

[tex]F_{net}[/tex]= 180 N - 130.9 N = 49.1 N

The acceleration of the skier is given by:

a = [tex]F_{net}[/tex]/m

Substituting the given values, we get:

a = 49.1 N / 63.0 kg = 0.78 m/s^2

The distance traveled by the skier across the patch of soft snow is given by:

d = 65.0 m

Using the kinematic equation:

[tex]v_f[/tex]² = [tex]v_i[/tex]² + 2ad

where[tex]v_i[/tex] is the initial velocity (which we assume to be zero),[tex]v_f[/tex] is the final velocity, a is the acceleration, and d is the distance traveled.

Substituting the given values and solving for [tex]v_f,[/tex]we get:

[tex]v_f[/tex]= √(2ad) = 11.4 m/s

c)

The skier hits a snowdrift and penetrates 3.0 m into it before coming to a stop. We can assume that the force exerted on the skier by the snowdrift is constant and equal to the average force required to bring the skier to a stop.

The work done by the snowdrift on the skier is given by:

W = Fd

where F is the average force exerted on the skier and d is the distance penetrated into the snowdrift.

The work done by the snowdrift is equal to the change in kinetic energy of the skier:

W = ΔK

where ΔK is the change in kinetic energy of the skier.

At the bottom of the slope, the kinetic energy of the skier was:

[tex]K_i[/tex] = (1/2)mv² = (1/2)(63.0 kg)(30.1 m/s)² = 28,500 J

At the point where the skier comes to a stop, her kinetic energy is zero. Therefore:

ΔK = -[tex]K_i[/tex]= -28,500 J

Substituting the given values and solving for F, we get:

F = W/d = ΔK/d = 9,500 N

To know more about kinetic energy

https://brainly.com/question/25959744

#SPJ4


Related Questions

an automobile engine slows down from 4,087 rpm to 1,830 rpm in 1,419 revolutions. calculate the magnitude of its angular acceleration in rad/s2. (assume a uniform deceleration.)

Answers

An automobile engine slows down from 4,087 rpm to 1,830 rpm in 1,419 revolutions the magnitude of the angular acceleration of the automobile engine is approximately 77.75 rad/s².

To calculate the magnitude of the angular acceleration, we can use the formula:

Angular acceleration (α) = (ω2 - ω1) / (t2 - t1)

where:

ω1 and ω2 are the initial and final angular velocities, respectively, and

t1 and t2 are the initial and final times, respectively.

Initial angular velocity ω1 = 4087 rpm

Final angular velocity ω2 = 1830 rpm

Number of revolutions (n) = 1419

First, we need to convert the angular velocities from rpm to radians per second (rad/s):

ω1 = (4087 rpm) * (2π rad/1 min) * (1 min/60 s) ≈ 426.97 rad/s

ω2 = (1830 rpm) * (2π rad/1 min) * (1 min/60 s) ≈ 191.46 rad/s

Next, we can calculate the time interval (t2 - t1) using the number of revolutions and the initial and final angular velocities:

t2 - t1 = (n / ω2) - (n / ω1)

t2 - t1 = (1419 / 191.46) - (1419 / 426.97) ≈ 3.3 s

Finally, we can calculate the magnitude of the angular acceleration:

α = (ω2 - ω1) / (t2 - t1)

α = (191.46 rad/s - 426.97 rad/s) / (3.3 s)

α ≈ -77.75 rad/s²

Therefore, the magnitude of the angular acceleration of the automobile engine is approximately 77.75 rad/s².

To know more about angular acceleration here

https://brainly.com/question/30237820

#SPJ4

Help me yall it due in a few minutes :((()

Answers

Answer:

B. blocks 2 & 3.

Explanation:

Block 1 has equal & opposite forces acting on it.

Block 2 has 5N on one side, 3N on the other. It will move in the direction the 5N of force is pushing.

Block 3 has no opposing force.

Waves cause beach sand to be ____________. a. well rounded b. poorly sorted

Answers

Waves cause beach sand to be well rounded.The effects of wave action on beach sand is crucial for coastal management and engineering.

How does wave action impact the shape of beach sand?

Waves crashing onto the shore have a profound impact on the shape and texture of beach sand. The relentless force of waves breaking and washing up onto the beach causes the sand particles to undergo a process known as attrition. This process involves constant movement and collision between the sand grains, leading to abrasion and gradual wearing down of their edges and corners.

As waves repeatedly crash onto the beach, the sand grains rub against each other, causing them to become smoother and more rounded over time. The abrasive action of the waves breaks down larger grains into smaller ones, resulting in a finer sand texture. This process is especially noticeable in areas where the wave action is particularly strong, such as along exposed coastlines or during stormy weather.

The well-rounded nature of beach sand is not only a result of wave action but also of other factors such as the composition of the sand itself. Sands composed of harder minerals tend to resist rounding to a certain extent, while softer minerals are more easily worn down and shaped by wave action.

Learn more about Waves

brainly.com/question/29334933

#SPJ11

A child on a sled starts from rest at the top of a 15.0 degree slope. If the trip to the bottom takes 15.2s, how long is the slope? Assume that frictional forces may be neglected.

Answers

A child on a sled starting from rest at the top of a 15.0-degree slope takes 15.2 seconds to reach the bottom, with the slope's length of 5.823 meters, neglecting frictional forces.

To find the length of the slope, we can use the equations of motion for motion along an inclined plane.

Given:

The angle of the slope: θ = 15.0 degrees

Time is taken to reach the bottom: t = 15.2 seconds

Initial velocity: u = 0 (since the child starts from rest)

We can use the equation of motion for displacement along an inclined plane:

s = ut + (1/2)at²

In this case, since the child starts from rest, the initial velocity u is 0, and we can simplify the equation to:

s = (1/2)at²

To find the acceleration a, we can use the equation for acceleration along an inclined plane:

a = g * sin(θ)

where g is the acceleration due to gravity (approximately 9.8 m/s²).

Plugging in the values, we have:

a = 9.8 m/s² * sin(15.0 degrees)

Calculating the value of a, we get:

a ≈ 2.529 m/s²

Now, we can use the equation s = (1/2)at² to find the length of the slope s:

s = (1/2) * (2.529 m/s²) * (15.2 s)²

Calculating the value of s, we get:

s ≈ 5.823 meters

Therefore, the length of the slope is approximately 5.823 meters.

To learn more about slope click:

brainly.com/question/29107671

#SPJ4

LOTS OF BRAINLIST WILL BE GIVING TO THOSE WHO HELP

Answers

You know you can skip those and just submit them, they don’t even check them

chemical reaction for fossil fuels:combustion of fuels.

Difference between biomass and fossil fuels:how much carbon dioxide is produced

Comparing biomass with other renewable energy sources:does not have as much energy potential as fossil fuels.

Making energy choices locally: biomass

Is this right. Please help me ITS SOCIOLOGY

Answers

Answer:

Yes

Explanation:

sorry if im wrong

The water droplets appear to be causing patterns of black and bright blue fringes. in terms of water in the real world (in a bowl, sink or pond), what do the bright blue and black colors mean?

Answers

Answer:

The bright blue and black colors represent the following:

Constructive and destructive interference are represented by the blue and black colors, respectively. When two water waves collide constructively, the resultant wave is bright blue, while when they collide destructively, the resultant wave is black in color.

Explanation:

   When two propagating waves with the same frequency (say, [tex]\nu[/tex]) and wavelength (say,[tex]\lambda[/tex]) but slightly different amplitudes (say, A 1 and A 2) traveling in the same direction interfere or are superimposed on each other (that is incident at the same point or object), a third resultant wave with a different amplitude (increased or decreased) but same wavelength and frequency is generated.  

The direction difference between the two waves determines whether they intervene constructively (increasing the amplitude of the resultant wave) or destructively (increasing the amplitude of the resultant wave) (decreased amplitude of the resultant wave). To put it another way, when the difference in direction between the two waves is of the form -

      [tex]\Delta x = n\lambda , n=0,1,2,.....[/tex] is the order of interference.

The two waves are then assumed to be in phase, and the interference is constructive, resulting in the resultant wave having a larger amplitude (which is the sum of the two amplitudes [tex]A_1 +A_2[/tex]  also known as a maxima). When the difference in direction between the two waves is in the form -

  [tex]\Delta x = (2n-1)\frac{\lambda}{2} , n=0,1,2,.....[/tex] is the order of interference.

The two intervening waves are then said to be out of phase, and the interference is disruptive, resulting in the resultant wave having a lower amplitude (which is the difference between the two amplitudes [tex]A_1+A_2[/tex], also known as a minima).

Hence , the graphical representation of constructive (blue )and destructive (black) is attached.

  do batteries produce or make energy

Answers

Batteries Produce energy

Answer:

Batteries are intended to store chemical energy and then it converts into electricidal energy. So overall, batteries produce energy.

Explanation:

A 13 500 N car traveling at 50.0 km/h rounds a curve of radius 2.00 × 102 m. Find the following: a. the centripetal acceleration of the car b. the centripetal force c. the minimum coefficient of static friction between the tires and the road that will allow the car to round the curve safely

Answers

Answer:

a. 0.947 m/s^2

b. 1304.54 N

c. 0.0966

Explanation:

mass of car = 13500 N = 13500/9.8 = 1377.55 kg

velocity = 50 km/h = 50,000 m/h = 13.9 m/s

raidus = 204 m

a. centripetal acceleartion = v^2/r = 13.9^2/204 = 0.947 m/s^2

b. centripetal force = m*centripetal acceleration = 1377.55 * 0.947 = 1304.54 N

c. In order for the car to round the curve safely, static friction = centripetal force

static friction = coefficient of friction (mu) * mg = mu* 1377.55*9.8 = 13500mu

13500mu = 1304.54

mu = 1304.54/13500 = 0.0966

The acceleration, force and coefficient of friction is required.

Centripetal acceleration is [tex]0.965\ \text{m/s}^2[/tex]

Centripetal force is [tex]1328\ \text{N}[/tex]

Coefficient of friction is [tex]0.1[/tex]

N = Weight of car = 13500 N

v = Velocity = [tex]50=\dfrac{50}{3.6}=13.89\ \text{m/s}[/tex]

r = Radius = [tex]2\times 10^2\ \text{m}[/tex]

m = Mass of car = [tex]\dfrac{N}{g}[/tex]

g = Acceleration due to gravity = [tex]9.81\ \text{m/s}^2[/tex]

Centripetal acceleration is

[tex]a_c=\dfrac{v^2}{r}\\\Rightarrow a_c=\dfrac{13.89^2}{2\times 10^2}\\\Rightarrow a_c=0.965\ \text{m/s}^2[/tex]

Force is given by

[tex]F_c=ma_c\\\Rightarrow F_c=\dfrac{N}{g}a_c\\\Rightarrow F_c=\dfrac{13500}{9.81}\times 0.965\\\Rightarrow F_c=1328\ \text{N}[/tex]

Coefficient of friction is given by

[tex]\mu=\dfrac{F_c}{N}\\\Rightarrow \mu=\dfrac{1328}{13500}\\\Rightarrow \mu=0.098\approx 0.1[/tex]

Learn more:

https://brainly.com/question/19487466?referrer=searchResults

If the ball starts from rest at the vertical edge of the track, what will be its speed when it reaches the lowest point of the track, rolling without slipping?
Express your answer in terms of the variables R, r, and the constant g.

Answers

The speed οf the ball when it reaches the lοwest pοint οf the track, rοlling withοut slipping is √10/7g(R-r).

What is speed?

Speed is a scalar quantity that measures hοw fast an οbject is mοving, withοut cοnsidering its directiοn. Speed is typically expressed in units such as meters per secοnd (m/s), kilοmeters per hοur (km/h), οr miles per hοur (mph).

Given:

The radius οf the ball is r.

The radius οf the track is R.

The acceleratiοn due tο gravity is 9.18 m/s².

The mοment οf inertia οf the spherical ball can be expressed as:

I=2/5m/r²

It is given that the ball is rοlling withοut slipping. The speed οf the ball can be expressed as:

v=rω

At the lοwest pοsitiοn οf the track, the ball has bοth types οf speed, namely angular and linear speed.

The tοtal energy οf the ball in the vertical circle can be expressed as:

cEₜ= Eᵦ+ K.Eₜ+ K.Eᵣ

mgR= mgr+ (1/2)mv²+ (1/2)Iω²

mg(R-r)=  (1/2)mv²+ (1/2)* (2/5) mr²ω²

g(R-r)= (1/2)v²+ (1/5)v²

Here,

Eₜ is the tοtal energy οf the ball οn the track,

Eᵦ is the ball's energy in the vertical circle at the highest pοint,

K.Eₜ is the translatiοnal kinetic energy οf the ball,

K.Eᵣ is the rοtatiοnal kinetic energy οf the ball, and g is the acceleratiοn due tο gravity.

The abοve equatiοn can be further sοlved as:

cg(R-r)= (7/10)v²

v²= (10/7)g (R-r)

v= √(10/7)g (R-r)

Therefοre, the speed οf the ball when it reaches the lοwest pοint οf the track is √10/7g(R-r).

To learn more about speed,

https://brainly.com/question/13262646

#SPJ4

A figure skater is spinning with her arms held straight out. Which has greater rotational speed, her shoulders or her fingertips? Why?

Answers

The figure skater spinning with her arms held straight out will have greater rotational speed at her fingertips compared to her shoulders.

Rotational speed of a figure skater

When the skater extends her arms straight out, the moment of inertia increases as the mass is distributed farther from the axis of rotation (her body).

According to the conservation of angular momentum, the product of moment of inertia and angular velocity remains constant unless an external torque acts on the system.

Since the moment of inertia increases when her arms are extended, the angular velocity must decrease to maintain the constant angular momentum.

As a result, the rotational speed is higher at her fingertips because they have a larger distance from the axis of rotation compared to her shoulders.

More on rotational speed can be found here: https://brainly.com/question/14391529

#SPJ4

Rita is a salon owner. She notices that her salon charged one of her clients, Linda, extra for a service that the clent did not request. What do you think Rita should do? Α. Remaln qulet about the extra money. B. Distribute the money equally among the staff. C. Call the client and Inform her that she was incorrectly charged. D. Try overcharging the next client too and check if it goes unnoticed.​

Answers

Answer:

C hope it helps

call the client and inform her that she was incorrectly charged.

Answer:

The answer is C. call the client and inform her that she was incorrectky charged

Explanation:

given the following information, determine the crystal structure. consider only fcc and bcc structures as possibilities. lattice parameter a = 0.4997 nm, powder x-ray: λ = 0.1542 nm.

Answers

Based on the given information of a lattice parameter and powder X-ray wavelength, the crystal structure can be determined by considering only the FCC and BCC structures as possibilities.

The lattice parameter, denoted as 'a,' represents the distance between the lattice points in a crystal structure. In this case, the given value of 'a' is 0.4997 nm. To determine the crystal structure, we need to compare this lattice parameter with the characteristic values of the FCC (face-centered cubic) and BCC (body-centered cubic) structures.

For the FCC structure, the relationship between the lattice parameter 'a' and the radius of the atoms or ions in the structure is given by a = 4√2r, where 'r' represents the atomic or ionic radius. Similarly, for the BCC structure, the relationship is a = 4√3r.

By rearranging the equations, we can solve for the radius 'r.' For the FCC structure, r = a/(4√2), and for the BCC structure, r = a/(4√3). Substituting the given lattice parameter 'a' into these equations, we can calculate the corresponding radii for each structure.

Next, we compare the calculated radii with the typical atomic or ionic radii for different elements. If the calculated radius matches closely with the known radius of an element, then that element is likely to form the crystal structure.

Lastly, to confirm the crystal structure, we can consider the powder X-ray wavelength (λ) provided. The X-ray diffraction pattern obtained from the powder X-ray experiment can help identify the characteristic peaks for different crystal structures. By comparing the observed diffraction pattern with the known patterns for FCC and BCC structures, we can determine the crystal structure based on the closest match.

In conclusion, by calculating the radii for FCC and BCC structures using the given lattice parameter, and by analyzing the X-ray diffraction pattern obtained from the powder X-ray experiment, the crystal structure can be determined as either FCC or BCC.

Learn more about X-ray wavelength here:

https://brainly.com/question/29102539

#SPJ11

POR FAVOR AYUDENME A RESOLVER ESTO:

Halla el coeficiente de dilatación lineal de una varilla que a 10 grados centígrados mide 125 metros y cuya longitud a 85 grados centígrados es 125.20 m. ¿De qué material será?

Answers

Answer:

 α = 2.13 10⁻⁵ C⁻¹    ,  the closest material is ALUMINUM

Explanation:

The expression for thermal expansion is

          ΔL = α L₀ ΔT

temperatures are

         ΔT = 85 - 10 = 75 ° C

the length of the rod is L₀ = 125 m and L_f = 125.20 m

        ΔL = 125.20 - 125 = 0.20 m

        α = [tex]\frac{1}{L_o} \frac{\Delta L }{\Delta T}[/tex]

        α = [tex]\frac{ 1}{125} \ \frac{0.20 }{75}[/tex]

        α = 2.13 10⁻⁵ C⁻¹

When reviewing the table, the closest material is ALUMINUM

A rocket is launched straight up from the earth's surface at a speed of 15000 m/s. what is its speed when it is very far away from the earth?

Answers

When a rocket is launched straight up from the Earth's surface, its speed gradually decreases as it moves away from the planet.

However, it never truly reaches a constant speed when it is very far away from the Earth. Instead, its speed continues to decrease due to the gravitational pull of other celestial bodies in space, such as the Sun and other planets. Therefore, it is not possible to determine the rocket's exact speed when it is very far away from the Earth without additional information about the rocket's trajectory, the effects of other gravitational forces, and the time elapsed since the launch. The exact speed when the rocket is very far away would depend on various factors, including the rocket's design, propulsion system, and the duration of its engine burn.

To learn more about rocket, https://brainly.com/question/29384212

#SPJ11

planet a exerts a force on planet b. what can be said about the magnitude and direction of the gravitational force planet b exerts on planet a?

Answers

Planet A exerts a force on planet B, the magnitude and direction of the gravitational force planet B exerts on planet A the gravitational force exerted by planet B on planet A is the same as the magnitude of the gravitational force exerted by planet A on planet B

Newton's third law states that if object A exerts a force on object B, then object B exerts an equal and opposite force on object A. Hence, if planet A exerts a gravitational force on planet B, then planet B exerts an equal and opposite gravitational force on planet A.The magnitude of the gravitational force exerted by planet B on planet A is the same as the magnitude of the gravitational force exerted by planet A on planet B, this is according to the law of universal gravitation,

This law states that the force of gravity between two objects is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers. The direction of the gravitational force exerted by planet B on planet A is towards planet B's center, just as the direction of the gravitational force exerted by planet A on planet B is towards planet A's center. Therefore, we can say that the magnitude and direction of the gravitational force planet B exerts on planet A is equal and opposite to the gravitational force planet A exerts on planet B

To know more about Newton's third law visit:

https://brainly.com/question/29768600

#SPJ11

Which of the following correctly defines the speed of a wave?
O A. v=1
B. A = vf
O C. v= f 2
OD. =v2

Answers

The correct answer is B I think

Answer:

V = f x λ

Explanation:

The options are confusing

What do bats, dolphin, and whale use to determine their location?
A-Location
B-Frequency
C-Echolocation
D-Amplitude
Please Help ​

Answers

C. Echolocation

Echolocating animals emit calls out to the environment and listen to the echoes of those calls that return from various objects near them. They use these echoes to locate and identify the objects.

Given that the nucleus of 18/8 O is formed by 8 protons and 10 neutrons, is the mass of a neutral atom of 18/8 O equals to the sum of the masses of 8 atoms of 1/1 H and 10 neutrons? Recall that the mass of a proton is mP = 1.007276 u and the mass of a neutron is mn = 1.008665 u. The mass of a neutral atom of 1/1 H is mH = 1.007825 u.

Answers

The mass of a neutral atom of ₈O¹⁸ is approximately equal to the sum of the masses of 8 atoms of ₁H¹ and 10 neutrons.

Given that the nucleus of ₈O¹⁸ is formed by 8 protons and 10 neutrons.

₈O¹⁸ = 8 protons(p) + 10 neutrons(n)

The mass of an atom is defined as the sum of the nucleons of the atom.

Nucleons are the general word for protons and neutrons since they are both found in the nucleus. Nucleons are hence the scientific term for the subatomic particles found in the atom's nucleus.

So,

Mass of the neutral atom of ₈O¹⁸ = (8 x mp) + (10 x mn)

m(₈O¹⁸) = (8 x 1.007276u) + (10 x 1.008665u)

m(₈O¹⁸) = 8.058208 + 10.08665

m(₈O¹⁸) = 18.144858 u

Also,

Mass of 8 atoms of ₁H¹ = 8 x m(₁H¹)

Mass of 8 atoms of ₁H¹ = 8 x 1.007825u

Mass of 8 atoms of ₁H¹ = 8.0626 u

So,

Mass of 8 atoms of ₁H¹ + 10 mn = 8.0626 + 1.008665

M = 18.9291 u

To learn more about nucleons, click:

https://brainly.com/question/9662870

#SPJ4

A satellite is moving in circular orbit of radius R about Earth. By what fraction must its velocity v be increased for the satellite to be in an elliptical orbit with rmin = R and rmax = 2R?

Answers

To transition of the satellite from a circular orbit with radius R to an elliptical orbit with rmin = R and rmax = 2R, the velocity v must be increased by a factor of 2.

In a circular orbit, the centripetal force required to keep the satellite in orbit is provided by the gravitational force between the satellite and the Earth.

Fcircular = Fgravity

The centripetal force in a circular orbit can be expressed as:

Fcircular = (mv²) / R

where m is the mass of the satellite, v is the velocity, and R is the radius of the circular orbit.

The gravitational force between the satellite and the Earth can be expressed using Newton's law of universal gravitation:

Fgravity = (G × m × M) / R²

where G is the gravitational constant and M is the mass of the Earth.

Equating the centripetal force and the gravitational force, we get:

(mv²) / R = (G × m × M) / R²

Canceling the mass (m) on both sides of the equation, we have:

v² / R = (G × M) / R²

Rearranging the equation to solve for v, we get:

v = √((G × M) / R)

Now, let's consider the elliptical orbit. The minimum radius (rmin) is R and the maximum radius (rmax) is 2R.

The velocity in the elliptical orbit at rmin can be calculated using the same equation as before:

vmin = √((G × M) / rmin)

Similarly, the velocity in the elliptical orbit at rmax can be calculated:

vmax = √((G × M) / rmax)

Now, we need to find the ratio of vmax to vmin:

vmax / vmin = √((G × M) / rmax) / √((G × M) / rmin)

Simplifying the expression:

vmax / vmin = √(rmin / rmax)

Substituting the given values rmin = R and rmax = 2R:

vmax / vmin = √(R / (2R))

Simplifying further:

vmax / vmin = √(1 / 2)

Taking the square root of 1/2:

vmax / vmin = 1 / √2

Rationalizing the denominator:

vmax / vmin = √2 / 2

Finally, we can see that vmax is twice vmin:

vmax = 2 × vmin

Therefore, to transition from a circular orbit of radius R to an elliptical orbit with rmin = R and rmax = 2R, the velocity v must be increased by a factor of 2.

Learn more about satellites at

https://brainly.com/question/9153566

#SPJ4

a 10 kg mass slides down a flat hill that makes an angle of 10 degrees with the horizontal. If friction is negligible, what is the resultant force on the sled?

a) 98N
b) 1.7N
c) 97N
d) 17N

Answers

A 10 kg mass slides down a flat hill that makes an angle of 10 degrees with the horizontal. Therefore, the resultant force on the sled is option (c) 97N.

If friction is negligible, the resultant force on the sled will be calculated below:

We know that gravitational force can be broken into two components - force parallel to the slope and force perpendicular to the slope.

The parallel component is given by

Fg * sin θ = 10*9.8*sin10 = 16.87 N.

The perpendicular component is given by

Fg * cos θ = 10*9.8*cos10 = 96.94 N.

The total force acting on the sled is the vector sum of the two components: Resultant force = √(16.87² + 96.94²) = 97 N.

to know more about gravitational force visit:

https://brainly.com/question/24783651

#SPJ11

A metal rod is 25.000 cm long at 25.0 degrees Celsius. When heated to 102.0 degrees Celsius, it is 25.054 cm long. What is the coefficient of linear expansion for this metal.

Answers

hi! the answer is in the photo down below :)

Place the single weight with a known mass on the spring and release it. Eventually the weight will come to rest at an equilibrium position with the spring somewhat stretched compared to its original (unweighted) length. At this point the upward force of the spring balances the force of gravity on the weight. With the weight in its equilibrium position, how does the amount the spring is stretched depend on the value of the weight's mass? Recall that in the equilibrium position, the upward force of the spring balances the force of gravity on the weight. Use this concept, along with the variable mass value the ruler, and the moveable line, to estimate the spring constant k of the spring. Set the damping to 'Lots so that the mass will come to rest quickly after being changed, and make sure the gravity is set to "Earth. " Finally, set the spring constant to "Small" Estimate the spring constant several times (using different values of mass) and average fogether for the most accurate calculation Exness our answer in N/m to two significant figures

Answers

When the single weight is put on the spring and released, it comes to rest at a position where the upward force of the spring is equivalent to the force of gravity. With the weight in the equilibrium position, the amount the spring is stretched depends on the value of the weight's mass.

A greater mass causes a greater stretch on the spring, according to Hooke's law, which states that the extension of a spring is proportional to the force applied to it.The amount of stretch, x, is given by the equationx = mg/kwhere m is the mass of the weight, g is the gravitational force, and k is the spring constant.To determine the spring constant, first, set the damping to "Lots" so that the mass will come to rest quickly after being changed, then set the gravity to "Earth," and lastly, set the spring constant to "Small".

Estimate the spring constant several times using different mass values and then average them together for the most accurate calculation. As a result, suppose you estimated the spring constant using three different masses: 0.25 kg, 0.50 kg, and 0.75 kg, and you received spring constants of 2.5 N/m, 4.5 N/m, and 7.5 N/m, respectively. The average of the spring constants is (2.5 + 4.5 + 7.5) / 3 = 4.83 N/m.Therefore, the estimated spring constant of the spring is 4.83 N/m (to two significant figures).

To know more about equilibrium visit :

https://brainly.com/question/30694482

#SPJ11

If the average human has a density of 1.01g/cm3
and the density of the Dead Sea is 1.23g/mL, why
can't we swim in the dead sea? Must have the
words (Mass, volume, and density)

Answers

Answer:The Dead Sea water has a density of 1.24 kg/litre

Explanation:

which makes swimming similar to floating.

which of these is an impossible set of quantum numbers? a. n = 3, ℓ = 2, mℓ = 1, ms = –½ b. n = 3, ℓ = 1, mℓ = 1, ms = –1 c. n = 2, ℓ = 0, mℓ = 0, ms = –½ d. n = 1, ℓ = 0, mℓ = 0, ms = –½

Answers

n = 3, ℓ = 1, mℓ = 1, ms = -1 is an impossible set of quantum numbers.

What are quantum numbers?

Quantum numbers are a set of values used to describe the unique energy states and properties of electrons in an atom. They provide a way to distinguish and characterize the different electron orbitals within an atom.

Among the given options:

a. n = 3, ℓ = 2, mℓ = 1, ms = -½

b. n = 3, ℓ = 1, mℓ = 1, ms = -1

c. n = 2, ℓ = 0, mℓ = 0, ms = -½

d. n = 1, ℓ = 0, mℓ = 0, ms = -½

Option (a) represents a valid set of quantum numbers. However, options (b), (c), and (d) are impossible sets of quantum numbers.

For option (b), the value of mℓ is not within the allowed range for the given ℓ value. In this case, ℓ = 1, which means that mℓ can have values -1, 0, or 1. The value of mℓ = 1 is outside this range.

For options (c) and (d), the values of n and ℓ are not consistent. According to the rules of quantum numbers, the principal quantum number (n) should be greater than or equal to the azimuthal quantum number (ℓ). However, in both options (c) and (d), the value of n is lower than ℓ, which is not possible.

Therefore, the correct answer is option (b), as it represents an impossible set of quantum numbers.

To learn more about quantum numbers,

brainly.com/question/28462802#

#SPJ4

a pendulum swings back and forth with a repeating motion. the pendulum makes full swings in 5 seconds. which expression below is the number of seconds required for a single swing?

Answers

The expression that represents the number of seconds required for a single swing is 2.5 seconds.

Hence, the correct option is C.

The number of seconds required for a single swing of a pendulum is half of the time it takes to complete a full swing.

Given that the pendulum makes full swings in 5 seconds, the expression for the number of seconds required for a single swing would be

5 seconds / 2 = 2.5 seconds

Therefore, the expression that represents the number of seconds required for a single swing is 2.5 seconds.

Hence, the correct option is C.

The given is incomplete and the complete question is '' A pendulum swings back and forth with a repeating motion. the pendulum makes full swings in 5 seconds. which expression below is the number of seconds required for a single swing

A. 3 seconds

B. 2.5 seconds

C. 5 seconds

D. 4 seconds ''.

To know more about seconds here

https://brainly.com/question/7640697

#SPJ4

Eee A student conducts an investigation to determine how the force of gravity affects different objects dropped from different heights. The student tests each object one time and announces that all objects experienced gravity the same way. What is wrong with the student's reasoning?

Answers

Answer:

For which the reasoning of the boy is correct for small heights, but as height increases his analysis is not correct.

Explanation:

The force of gravity comes from Newton's second law with the force the universal attraction

         F = ma

         F = [tex]G \frac{m_1 M}{(R_e +h)^2}[/tex]

we substitute

          [tex]G \frac{m_1 M}{ (R_e+ h)^2}[/tex] = m₁ a

where Re is the radius of the Earth 6.37 106 m

          a = [tex]G\frac{M}{R_e^2} \ ( 1 + \frac{h}{R_e})^{-2}[/tex]

In general, the height is much less than the radius of the earth, therefore the term ha / Re is very small and we can use a series expansion leaving only the first fears.

             (1 + x)⁻² = 1 -2x + [tex]\frac{2 \ 1}{2!}[/tex]  x²

we substitute

          a = g₀ ([tex]1 - 2 \frac{h}{R_e}[/tex] )

with

         g₀ = [tex]G \frac{M}{R_e^2}[/tex]

let's launch the expression.

* For small height compared to the radius of the earth we can neglect the last term

          g = g₀

* For height comparable to the radius of the Earth

          g = g₀  [tex](1 - \frac{2h}{Re} )[/tex]

We see that the acceleration of gravity is decreasing.

For which the reasoning of the boy is correct for small heights, but as height increases his analysis is not correct.

The student's reasoning gone wrong when the analysis is undertaken for the increasing heights, to drop the object.

The given problem is based on the concept of gravity and gravitational force. The force of gravity comes from Newton's second law with the force the universal attraction as,

F = ma

[tex]F=G\dfrac{mM}{(R+h)^{2}}\\\\\\ma = G\dfrac{mM}{(R+h)^{2}}[/tex]

Here, a is the linear acceleration, m is the mass of object, M is the mass of Earth, R is the radius of Earth and h is the height from where the objects will be dropped. Then,

[tex]a = \dfrac{GM}{R^{2}} \times(1+h/R)^{-2}[/tex]

In general, the height is much less than the radius of the earth, therefore the term h/ R is very small, hence can be neglected.

[tex]a = \dfrac{GM}{R^{2}}\\\\a=g = \dfrac{GM}{R^{2}}[/tex]

g is the gravitational acceleration.

For small height compared to the radius of the earth we can neglect the last term as,

a = g

And for the height comparable to radius of Earth,

[tex]a = \dfrac{GM}{R^{2}} \times(1+h/R)^{-2}\\\\a=g \times(1+h/R)^{-2}[/tex]

Clearly, the acceleration of gravity is decreasing, for which the reasoning of the boy is correct for small heights, but as height increases his analysis is not correct.

Thus, we can conclude that the student's reasoning gone wrong when the analysis is undertaken for the increasing heights, to drop the object.

Learn more about the gravitational force here:

https://brainly.com/question/15647838

Bethany, who weighs 460 N, lies in a hammock suspended by ropes tied to two trees. The left rope makes an angle of 45∘ with the ground; the right one makes an angle of 30∘.

Find the tension in the left rope.
Find the tension in the right rope.

Answers

Bethany weighs 460 N and she is lying in a hammock which is suspended by ropes that are tied to two trees. The left rope makes an angle of 45° with the ground and the right one makes an angle of 30°.  Therefore, the tension in the left rope is approximately 325 N (rounded to 3 significant figures) and the tension in the right rope is approximately 362 N (rounded to 3 significant figures).

We need to find the tension in the left and right ropes. We will use the trigonometric functions to solve the problem. Let us assume that T1 is the tension in the left rope and T2 is the tension in the right rope. Now, let us resolve the forces acting on the hammock horizontally and vertically using trigonometry. From the diagram above, we can see that the weight of Bethany (460 N) acts downwards, so we can resolve this force vertically.

We get the following equations:∑ Fx = T1 cos 45° - T2 cos 30° = 0 (∵ hammock is not moving horizontally)

∑ Fy = T1 sin 45° + T2 sin 30° - 460 N = 0 (∵ hammock is not moving vertically)

Now we can solve the two equations simultaneously to get T1 and T2.

T1 cos 45° - T2 cos 30° = 0  ...

(1)T1 sin 45° + T2 sin 30° - 460 N = 0  ...

(2)Multiplying equation (1) by sin 45° and equation (2) by cos 30°, we get:

T1 sin 45° cos 30° - T2 cos 30° cos 45° = 0 ...

(1')T1 sin 45° cos 30° + T2 sin 30° cos 30° = 460 N cos 30°  ...

(2')Adding equations (1') and (2'), we get:

T1 sin 45° cos 30° = 460 N cos 30°T1 = 460 N cos 30° / sin 45°T1 = 460 N / √2

T2 = T1 cos 45° / cos 30°T2 = (460 N / √2) (cos 45° / cos 30°)T2 = 362 N.

to know more about trigonometric functions visit:

https://brainly.com/question/14746686

#SPJ11




The global winds and moisture belts indicate that large amounts of rainfall occur at
the Earth's equator because air is

Answers

it should be rising and converging

The global winds and moisture belts indicate that large amounts of rainfall occur at the Earth's equator because air is rising and converging.

What is  Earth's equator?

The equator is a large circle that circles the planet Earth, lying in a plane perpendicular to the axis of the planet and being equally spaced from all four geographic poles.

Rainfall in equatorial regions averages 4000mm per year. Every other raining produces about 22 days of precipitation in a month. The equatorial regions have higher temperatures because solar radiation produces a lot of heat there.

The cold air filters down into the lower levels of the atmosphere because the hot air is less dense here than the cold air. The tropical regions become warmer as a result. In the tropical rain belt, the tropical climate predominates.

Learn more about equator here:

https://brainly.com/question/4535514

#SPJ6

block a has a mass of 2kg and a speed of 50 m/s along the positive x axis.

Answers

The momentum of block A is calculated by multiplying its mass (2 kg) with its velocity (50 m/s). Therefore, the momentum of block A is 100 kg·m/s.

What is the momentum of block A given its mass of 2 kg and velocity of 50 m/s?

Momentum is a fundamental concept in physics that quantifies the motion of an object. It is defined as the product of an object's mass and its velocity. In this case, block A has a mass of 2 kg and is moving along the positive x-axis with a speed of 50 m/s. To find the momentum, we multiply the mass and velocity: 2 kg * 50 m/s = 100 kg·m/s.

Momentum represents the quantity of motion possessed by an object and accounts for both its mass and how fast it is moving. The larger the mass or velocity, the greater the momentum. When considering momentum, direction is also crucial, as it is a vector quantity. In this scenario, since the block is moving along the positive x-axis, the momentum is positive.

Learn more about momentum Momentum

brainly.com/question/30677308

#SPJ11

Other Questions
Micah has been learning about Scientific Notation in math class and is frustrated because he doesnt understand why he needs to learn it. While working on his homework with his mother, she told Micah that Scientific Notation can be very useful in certain careers. What do you think she meant? Did anyone else get a notice about earth day because i had to do a survey. Can yall please help me out a project with only one sign change on its net cash flow is a non-conventional cash flow series. True or False Too Young, Inc.,has a bond outstanding with a coupon rate of 7.0 percent and semiannual payments. The yield to maturity is 6.0 percent and the bond matures in 20 years. What is the market price if the bond has a par value of $1,000? a. $1,125.51 b. $1,106.25 c. $1,104.55d. $1.115.57 e. $1,107.71 The most relevant source for politicians debating whether to reduce the size of the military is a _________.a. textbook detailing the history of military sizes. b. newspaper using paid information about the proposal. c. report on a government website analyzing the idea. d. defense-contractor blog promoting the military. Which is an example of a social welfare program in the United States?A. Income for the elderlyB. Food for the poorC. Jobs for the unemployedD. All of the aboveAP_EX - Sociology Which of the following did Thomas Edison invent?O A. Sewing machineO B. AutomobileO C. Electric lightbulb. D. Steam engine What type of volcano is Mt. Fujiyama? Write a paragraph incorporating four of the following six words: generously, happily, sheepishly, probably, slowly, rapidly. A nurse is caring for a school-age child who has a new prescription for continuous pulse oximetry monitoring. which of the following should the nurse take?A-Apply the sensor to the index fingernailB-Tape the wire to the palm of. the handC-Reposition the probe every 2 hrD-Warm the skin prior to probe placement Mark hopes to one day earn $10,000. Estimate howmany clients Mark would need. 4. (15 points) One of the eigenvalues of A = independent eigenvectors corresponding to = 2. 1 1 1 !. is = 2. Find two linearly Consider the five-element framework of emotional intelligence listed in the article (self-awareness, self-regulation, motivation, empathy, social skills). Which of these characteristics do you possess naturally? Which characteristic do you lack? Which of the two characteristics do you feel is more important in the development of EI? Why? Calculate the range, interquartile range, variance and standard deviation for the data of a set A and set B and answer each of the following question. = Set B= Set A = 1,2,3,4,5,6,7 1.2.3.4.5.6.50 (a) Which measure of dispersion for the data of set A and set B has significant difference? (b) Determine the most appropriate measure of dispersion to be used to measure the distribution of the data of set B helpppppppppppppp How is a discussion different from a conversation? Good moring bestie :3 5 times 2 Homeostasis refers to A. the similarity of genetic traits to one another. B. a mixture or solution that is the same throughout. C. the tendency of a cell to maintain a stable internal environment. D. the effect of natural selection on human evolution.NEED HELP QUICK!!!!!!!! Why do some people choose virtue and others choose corruption? Find the value of the variables in the image above