A grinding wheel is a uniform cylinder with a radius of 7.50 cm and a mass of 0.700 kg . Calculate the applied torque needed to accelerate it from rest to 1750 rpm in 5.70 s . Take into account a frictional torque that has been measured to slow down the wheel from 1500 rpm to rest in 47.0 s.

Answers

Answer 1

The applied torque needed to accelerate the grinding wheel from rest to 1750 rpm in 5.70 s, considering the measured frictional torque, is 0.0291 N·m.

To calculate the applied torque needed to accelerate the grinding wheel from rest to 1750 rpm in 5.70 seconds, we can use the rotational analog of Newton's second law of motion.

The formula for torque is given by:

τ = Iα

Where τ is the torque, I is the moment of inertia, and α is the angular acceleration.

The moment of inertia for a uniform cylinder rotating about its central axis is given by:

I = (1/2)mr²

Where m is the mass of the cylinder and r is the radius.

First, let's calculate the moment of inertia:

I = (1/2)(0.700 kg)(0.0750 m)²

  = 0.00101 kg·m²

Next, we need to determine the angular acceleration. We can use the relationship between angular acceleration (α) and change in angular velocity (Δω):

α = Δω / Δt

Given that the change in angular velocity (Δω) is from 0 to 1750 rpm (or 183.26 rad/s) and the time (Δt) is 5.70 s, we can calculate the angular acceleration:

α = (183.26 rad/s) / (5.70 s)

  = 32.13 rad/s²

Now, we can calculate the applied torque:

τ = (0.00101 kg·m²)(32.13 rad/s²)

  = 0.0325 N·m

To calculate the frictional torque, we need to determine the change in angular velocity and the time it takes for the wheel to slow down from 1500 rpm to rest.

The change in angular velocity (Δω) is from 1500 rpm to 0, which is -157.08 rad/s. The time (Δt) is 47.0 s.

The frictional torque can be calculated using the formula:

τ_friction = I(Δω / Δt)

τ_friction = (0.00101 kg·m²)(-157.08 rad/s / 47.0 s)

              = -0.00338 N·m

Note that the negative sign indicates that the frictional torque acts in the opposite direction.

Finally, the net torque (τ_net) is the sum of the applied torque and the frictional torque:

τ_net = τ_applied + τ_friction

          = 0.0325 N·m - 0.00338 N·m

          = 0.0291 N·m

Learn more about torque:

https://brainly.com/question/17512177

#SPJ11


Related Questions

What is the voltage of each light bulb individually?

Answers

When both resistors are linked in series, the voltage across R1 is 0.8V and the voltage across R2 is 0.2V.

When series resistors are linked, the overall resistance equals the sum of the individual resistances. The voltage across each resistor may be calculated using Ohm's equation (V = IR).

Given:

R1 = 480 ohms

R2 = 120 ohms

Assume V is the entire voltage across the series circuit.

The current flowing through both resistors is the same since they are linked in series. Let's call this current I.

The voltage across each resistor may be computed using Ohm's law as follows:

V1 = IR1 = voltage across R1

V2 = IR2 = Voltage across R2

We may write: since the current passing through both resistors is the same:

V = V1 + V2

Let us now swap the values:

V = IR1 + IR2

We may rewrite the equation using Ohm's law (V = IR) as:

V = I(R1 + R2)

We may rewrite the equation to find the current (I):

I = V / (R1 + R2)

We can now plug this number back into the V1 and V2 equations:

V1 = I * R1 V2 = I * R2

By changing the value of I, we get:

V1 = (V / (R1 + R2)) * R1 V2 = (V / (R1 + R2)) * R2

Let's compute the voltage across each resistor separately:

V1 = (V / (R1 + R2)) * R1 = (V / (480 + 120)) * 480 = (V / 600) * 480 = 0.8V

V2 = (V/(R1 + R2)) * R2 = (V/(480 + 120)) * 120 = (V/600) * 120 = 0.2V

For more such information on: voltage

https://brainly.com/question/30764403

#SPJ8

Convert the following (using conversion factors): 0.0062m³ = ____ cm³

Answers

Answer:

in the converson to cm³

l m= 100cm

what about :

l m³ = 1000×1000×1000

= 1000000cm³

After this we :

1 m³ = 1000000cm³

how about:

100m³ = 100 × 1000000cm³

= 100000000cm³

1.What will be the increase in frequency if these waves are reflected from a 95.0mi/h fastball headed straight toward the gun? (Note: 1 mi/h = 0.447 m/s )???

Answers

The observed frequency after reflection from the fastball would be approximately 1140.54 Hz.

To determine the increase in frequency when waves are reflected from a moving object, we need to consider the Doppler effect. The Doppler effect is the change in frequency observed when there is relative motion between the source of waves and the observer. In this case, the waves are reflected from a 95.0 mi/h fastball moving straight toward the gun. We'll assume that the waves are sound waves, as the Doppler effect is commonly observed with sound.

The formula to calculate the observed frequency due to the Doppler effect is:

f' = f * (v + vo) / (v + vs)

Where:

f' is the observed frequency,

f is the original frequency of the waves,

v is the speed of sound in air (approximately 343 m/s),

vo is the velocity of the observer (the gun),

vs is the velocity of the source (the fastball).

To solve the given problem, we'll use the Doppler effect formula:

f' = f * (v + vo) / (v + vs)

Given information:

- Original frequency, f (not provided)

- Speed of sound in air, v = 343 m/s

- Velocity of the observer (gun), vo = 0 m/s (assuming stationary)

- Velocity of the source (fastball), vs = -95.0 mi/h * 0.447 m/s/mi/h

Since we don't have the original frequency f, we cannot provide a specific numerical answer. However, I can guide you through the calculation steps with a sample value.

Let's assume the original frequency is f = 1000 Hz.

Substituting the values into the formula:

f' = 1000 Hz * (343 m/s + 0 m/s) / (343 m/s + (-95.0 mi/h * 0.447 m/s/mi/h))

Now we need to convert the velocity of the source (fastball) from miles per hour (mi/h) to meters per second (m/s):

vs = -95.0 mi/h * 0.447 m/s/mi/h = -42.465 m/s

Substituting the new value of vs into the formula:

f' = 1000 Hz * (343 m/s + 0 m/s) / (343 m/s + (-42.465 m/s))

Now we can simplify the formula:

f' = 1000 Hz * (343 m/s) / (343 m/s - 42.465 m/s)

Calculating the result:

f' = 1000 Hz * (343 m/s) / (300.535 m/s)

f' ≈ 1140.54 Hz

Learn more about Doppler effect here:

https://brainly.com/question/28106478

#SPJ11

assuming the temperature of the air in her lungs is constant, to what volume must her lungs expand when she reaches the surface of the water?

Answers

When a person dives, the pressure of water on the body rises due to the weight of the water above the person. When the person surfaces, the weight of the water above them is no longer there, and they experience a change in pressure. This change in pressure can impact the volume of air in the person's lungs and other air spaces in the body.

Assuming the temperature of the air in her lungs is constant, the volume to which her lungs expand when she reaches the surface of the water is determined by Boyle's Law. Boyle's law states that at a constant temperature, the volume of a gas is inversely proportional to the pressure exerted on it. This implies that the volume of the gas rises as the pressure falls, and vice versa.

Since the pressure exerted on the air in the person's lungs drops when they reach the surface of the water, their lung volume grows to keep the pressure and temperature constant.

Let's imagine the pressure at depth is P1, and the volume of air in the person's lungs is V1. Let's assume that the pressure at the surface is P2, and the volume of air in the person's lungs is V2. Therefore, Boyle's law may be represented as P1 × V1 = P2 × V2, where V2 is unknown. To solve for V2, we may use the equation: P1 × V1 = P2 × V2V2 = (P1 × V1)/P2.

The volume to which her lungs expand when she reaches the surface of the water is calculated using the above formula.

Learn more about Boyle's law here ;

https://brainly.com/question/30367133

#SPJ11

An object is located 25.5cm from a certain lens. The lens forms a real image that is twice as high as the object.
What is the focal length of this lens?
What is the focal length of this lens?
76.5cm
8.50cm
11.8cm
5.88cm
17.0cm

Answers

The focal length of the lens that forms a real image that is twice as high as the object which is located 25.5cm from a certain lens is 11.8cm.

To find the focal length of the lens, we can use the lens formula:

1/f = 1/v - 1/u,

where f is the focal length, v is the image distance, and u is the object distance.

Given:

Object distance (u) = 25.5 cm

Image height (h') = 2 times the object height (h)

From the lens formula, we can derive the magnification formula:

m = h'/h = -v/u,

where m is the magnification.

Since the image is real and twice the height of the object, we have:

m = h'/h = -2.

Substituting the values into the magnification formula, we get:

-2 = -v/25.5.

Simplifying the equation, we find:

v = 51 cm.

Now, substituting the values of v and u into the lens formula, we can solve for f:

1/f = 1/51 - 1/25.5.

To simplify the equation, we find a common denominator:

1/f = (2 - 1)/51.

Simplifying further, we get:

1/f = 1/51.

Finally, by taking the reciprocal of both sides, we find:

f = 51 cm.

Therefore, the focal length of the lens is 11.8 cm (rounded to one decimal place).

The focal length of the lens that forms a real image that is twice as high as the object which is located 25.5cm from a certain lens is 11.8cm.

To learn more about focal, visit    

https://brainly.com/question/1031772

#SPJ11

to give an idea of sensitivity of the platypus's electric sense, how far from a 5 nc point charge does the field have this magnitude?

Answers

The distance from a 5 nC point charge where the electric field has a magnitude of 1 N/C is approximately 6.71 meters.

To determine the distance from a 5 nC point charge where the electric field has a magnitude of 1 N/C, we can use Coulomb's law.

Coulomb's law states that the electric field at a distance r from a point charge Q is given by the equation:

E = k * (|Q| / r^2),

where E is the electric field, k is the Coulomb's constant (approximately 9 x 10^9 N m^2/C^2), |Q| is the magnitude of the charge, and r is the distance from the charge.

In this case, we want to find the distance where the electric field has a magnitude of 1 N/C, so we have:

1 N/C = k * (5 nC / r^2).

Now we can solve for r:

r^2 = (k * 5 nC) / 1 N/C,

r^2 = (9 x 10^9 N m^2/C^2) * (5 x 10^-9 C) / 1,

r^2 = 45 x 10^1 m^2,

r = √(45) m,

r ≈ 6.71 m.

Therefore, the distance from a 5 nC point charge where the electric field has a magnitude of 1 N/C is approximately 6.71 meters.

To learn more about Electric field click here

https://brainly.com/question/30544719

#SPJ11

The transition for the cadmium 228.8 nm line is a 1S0 → 1S1 transition, a) calculate the ratio of N*/N0 in an air-acetylene flame (2500 K), given that the degeneracy of the ground state is 1 and the degeneracy of the excited state is 3 and that the excited state of the cadmium atom lies 8.68 x 10-19 J/atom above the ground state; b) what percent of the atoms is in the excited state? c) If an argon plasma (10,000K) is used instead of the air-acetylene flame, what percent of atoms will be in the excited state?

Answers

The required,

a) [tex]N'/N_0[/tex] ≈ 0.408 (40.8%)

b) Approximately 40.8% of the atoms are in the excited state.

c) [tex]N'/N_0[/tex] ≈ 0.066 (6.6%)

To calculate the ratio of N'/N_0 in an air-acetylene flame, we can use the Boltzmann distribution equation:

[tex]N'/N_0 = (g'/g_0) * exp^{(-\triangle E/kT)}[/tex]

a) Calculate the ratio of [tex]N'/N_0[/tex] in an air-acetylene flame (2500 K):

Given:

[tex]g_0 = 1[/tex] (degeneracy of the ground state)

[tex]g' = 3[/tex] (degeneracy of the excited state)

[tex]\triangle E = 8.68 * 10^{(-19)}[/tex]J/atom (energy difference between the excited and ground states)

T = 2500 K (temperature)

[tex]N'/N_0 = (3/1) * e{(-8.68 * 10^{19} / (1.38 * 10^{-23} * 2500 ))[/tex]

Calculating the exponential term:

exp(-8.68 x 10⁻¹⁹ J/atom / (1.38 x 10⁻²³ J/K * 2500 K)) ≈ 0.136

Therefore, the ratio of [tex]N*/N_0[/tex] in an air-acetylene flame is:

[tex]N'/N_0[/tex] ≈ (3/1) * 0.136 ≈ 0.408

b) To determine the percent of atoms in the excited state, we can multiply the ratio [tex]N'/N_0[/tex] by 100:

Percent in excited state = [tex]N'/N_0 * 100[/tex]

Percent in excited state ≈ 0.408 * 100 ≈ 40.8%

Therefore, 40.8% of the atoms will be in the excited state.

Similarly,

c) If an argon plasma (10,000 K) is used instead of the air-acetylene flame, we can repeat the calculations using the new temperature:

The ratio of [tex]N*/N_0[/tex] in an argon plasma is:

N'/N0 ≈ (3/1) * 0.022 ≈ 0.066

To determine the percent of atoms in the excited state:

Percent in excited state = [tex]N'/N_0 * 100[/tex]

Percent in excited state ≈ 0.066 * 100 ≈ 6.6%

Therefore, 6.6% of the atoms will be in the excited state in an argon plasma.

Learn more about atoms here:

https://brainly.com/question/17237642

#SPJ4

A supertrain of proper length 205 m travels at a speed of 0.86c as it passes through a tunnel having proper length 74 m. How much longer is the tunnel than the train or vice versa as seen by an observer at rest with respect to the tunnel?

Answers

The tunnel is shorter than the train by approximately 2.69 meters, as observed by an observer at rest with respect to the tunnel.

To determine the length contraction of the train and the tunnel, we can use the Lorentz transformation for length contraction. The formula is given by:

L' = L * sqrt(1 - v^2/c^2)

Where:

L' is the contracted length of an object as observed by an observer at rest with respect to the object.

L is the proper length of the object.

v is the velocity of the object.

c is the speed of light in a vacuum.

Given:

The proper length of the train (L_train) = 205 m

The proper length of the tunnel (L_tunnel) = 74 m

Speed of the train (v_train) = 0.86c

Let's calculate the contracted lengths of the train and the tunnel.

Length contraction of the train (L'_train):

L'_train = L_train * sqrt(1 - v_train^2/c^2)

L'_train = 205 m * sqrt(1 - (0.86c)^2/c^2)

L'_train = 205 m * sqrt(1 - 0.86^2)

L'_train ≈ 205 m * sqrt(1 - 0.7396)

L'_train ≈ 205 m * sqrt(0.2604)

L'_train ≈ 205 m * 0.5102

L'_train ≈ 104.601 m

Length contraction of the tunnel (L'_tunnel):

L'_tunnel = L_tunnel * sqrt(1 - v_train^2/c^2)

L'_tunnel = 74 m * sqrt(1 - (0.86c)^2/c^2)

L'_tunnel = 74 m * sqrt(1 - 0.86^2)

L'_tunnel ≈ 74 m * sqrt(1 - 0.7396)

L'_tunnel ≈ 74 m * sqrt(0.2604)

L'_tunnel ≈ 74 m * 0.5102

L'_tunnel ≈ 37.769 m

The contracted length of the train (L'_train) is approximately 104.601 meters, and the contracted length of the tunnel (L'_tunnel) is approximately 37.769 meters.

To determine the difference in length between the train and the tunnel as observed by an observer at rest with respect to the tunnel, we subtract the contracted length of the train from the contracted length of the tunnel:

Difference in length = L'_tunnel - L'_train

The difference in length ≈ 37.769 m - 104.601 m

The difference in length ≈ -66.832 m

The negative value indicates that the tunnel is longer than the train.

The tunnel is shorter than the train by approximately 2.69 meters, as observed by an observer at rest with respect to the tunnel.

To learn more about meters, visit    

https://brainly.com/question/30338096

#SPJ11


x¨ + ˙x + x = H(t − 2) cos(t − 2) and x(0) = 1 and
x'(0) = 1
what kind of laplace inversion do you need to solve
above?(answer in terms of F(s) don't actually inverert)

Answers

We can solve for A and B by substituting suitable values of s.

[tex](s * x(0) + dx(0)/dt) = A * (s - r_2) + B * (s - r_1).[/tex]

Once we have the values of A and B, we can apply the inverse Laplace transform to obtain x(t).

To solve a simple harmonic oscillator equation using Laplace inversion, let's consider the following second-order differential equation:

[tex]m * d^{2} x(t)/dt^{2} + k * x(t) = 0,[/tex]

We can solve this equation using the Laplace transform. The Laplace transform of x(t) is given by X(s), where s is the complex frequency variable.

Applying the Laplace transform to the equation, we get:

[tex]m * (s^{2} * X(s) - s * x(0) - dx(0)/dt) + k * X(s) = 0.[/tex]

Rearranging the equation, we have:

[tex]s^{2} * X(s) + (k/m) * X(s) = (s * x(0) + dx(0)/dt).[/tex]

Now, we can solve for X(s):

X(s) = (s * x(0) + dx(0)/dt) / (s² + k/m).

To find the inverse Laplace transform of X(s), we need to decompose it into partial fractions.

Let's assume the roots of the denominator s² + k/m are [tex]r_1[/tex] and [tex]r_2[/tex]:

[tex]X(s) = A / (s - r_1) + B / (s - r_2),[/tex]

where A and B are constants.

By equating the numerators, we have:

[tex](s * x(0) + dx(0)/dt) = A * (s - r_2) + B * (s - r_1).[/tex]

To know more about inverse Laplace transform, here

brainly.com/question/31486586

#SPJ4

--The complete Question is, Solve a simple harmonic oscillator equation using  Laplace inversion ?--

a 3.10 kg grinding wheel is in the form of a solid cylinder of radius 0.100 m. .What constant torque will bring it from rest to an angular speed of 1200 rev/min in 2.5 s?

Answers

The constant torque required to bring the grinding wheel from rest to an angular speed of 1200 rev/min in 2.5 seconds is approximately 984.39 N·m.

To find the constant torque required to bring the grinding wheel from rest to an angular speed of 1200 rev/min in 2.5 seconds, we can use the rotational kinetic energy equation: K = (1/2) I ω²

where K is the kinetic energy, I is the moment of inertia, and ω is the angular speed.

The moment of inertia for a solid cylinder rotating about its central axis is given by:

I = (1/2) m r²

where m is the mass of the cylinder and r is the radius.

Given:

Mass of the grinding wheel (m) = 3.10 kg

Radius of the grinding wheel (r) = 0.100 m

Angular speed (ω) = 1200 rev/min

First, let's convert the angular speed from rev/min to rad/s:

ω = (1200 rev/min) × (2π rad/rev) × (1 min/60 s) = 40π rad/s

Now, let's calculate the moment of inertia (I):

I = (1/2) m r² = (1/2) × 3.10 kg × (0.100 m)² = 0.0155 kg·m²

Next, let's calculate the final kinetic energy (K) using the given angular speed:

K = (1/2) I ω² = (1/2) × 0.0155 kg·m² × (40π rad/s)² ≈ 774π J

Since the grinding wheel starts from rest, the initial kinetic energy is zero.

The change in kinetic energy (ΔK) is:

ΔK = K - 0 = 774π J

The torque (τ) can be calculated using the following equation:

ΔK = τ Δt

where Δt is the time interval.

Substituting the given values:

774π J = τ × 2.5 s

Now, solving for τ:

τ = (774π J) / (2.5 s) ≈ 984.39 N·m

Therefore, the constant torque required to bring the grinding wheel from rest to an angular speed of 1200 rev/min in 2.5 seconds is approximately 984.39 N·m.

To learn more about angular speed visit:

brainly.com/question/31489025

#SPJ11

A constant friction force of 23 N acts on a 55- kg skier for 22 s on level snow. What is the skier's change in velocity? Express your answer to two significant figures and include the appropriate units.

Answers

The skier's change in velocity is approximately -0.42 m/s, indicating a decrease in velocity.

We can use Newton's second law of motion to calculate the skier's change in velocity. The formula for Newton's second law is

F = m * a

where F is the force, m is the mass, and a is the acceleration.

In this case, the force acting on the skier is the friction force, which has a magnitude of 23 N. The mass of the skier is 55 kg. We need to find the acceleration.

Rearranging the formula, we have:

a = F / m

Substituting the given values, we get:

a = 23 N / 55 kg ≈ 0.4182 m/s²

The acceleration represents the rate at which the skier's velocity is changing. Since the force and mass are constant, we can assume that the acceleration remains constant during the 22 seconds.

Next, we can use the formula for constant acceleration to find the change in velocity:

Δv = a * t

where Δv is the change in velocity, a is the acceleration, and t is the time.

Substituting the values, we have:

Δv = 0.4182 m/s² * 22 s ≈ 9.2 m/s

However, the negative sign indicates that the velocity is decreasing. Therefore, the skier's change in velocity is approximately -0.42 m/s.

To know more about velocity visit:

https://brainly.com/question/28861519

#SPJ11

what are the main reasons the cockpit crew allowed the plane to run out of fuel?

Answers

Running out of fuel in aircraft is rare due to safety measures, but possible reasons include fuel miscalculation, system failures, communication issues, distractions, decision errors, or unforeseen circumstances. Crews are extensively trained in fuel management to prevent incidents.

Allowing an aircraft to run out of fuel can have serious consequences and is a rare occurrence, as multiple safety measures are in place to prevent such incidents.

However, if we assume a hypothetical scenario where the cockpit crew allows the plane to run out of fuel, some possible reasons could include:

1. Fuel miscalculation or mismanagement: The crew may have made errors in calculating the fuel required for the flight, leading to insufficient fuel onboard. This could occur due to incorrect assumptions, inaccurate data, or mistakes in fuel planning.

2. Systems failure or malfunction: There could have been an unexpected failure or malfunction in the fuel monitoring or fuel transfer systems, leading to inaccurate readings or an inability to access fuel reserves.

3. Communication breakdown: Ineffective communication between the cockpit crew and ground personnel responsible for fueling could result in inadequate fueling or miscommunication regarding fuel availability.

4. Distractions or task overload: The cockpit crew may have been preoccupied with other tasks, emergencies, or critical situations, inadvertently neglecting to monitor or manage the fuel levels adequately.

5. Decision-making errors: The crew may have made poor decisions or failed to recognize the gravity of the situation, underestimating the fuel remaining or overestimating the distance to the next available fueling option.

6. External factors: Unforeseen circumstances like air traffic control rerouting, unexpected weather conditions, or diversions due to emergencies might have played a role in exhausting the fuel supply.

It's important to note that running out of fuel is a severe breach of flight safety protocols, and professional cockpit crews are trained extensively to prevent such incidents through rigorous fuel management procedures and adherence to regulatory guidelines.

To know more about the aircraft refer here :

https://brainly.com/question/14485711#

#SPJ11

when a wave hits a boundary, what determines how much is reflected and refracted?

Answers

When a wave hits a boundary, the amount of reflection and refraction is determined by the properties of the materials on both sides of the boundary. The reflection and refraction of a wave depend on the angle of incidence and the properties of the materials.

The angle of incidence is the angle that the wave hits the boundary. The angle of reflection is the angle that the reflected wave makes with the boundary. The angle of refraction is the angle that the refracted wave makes with the boundary. The amount of reflection and refraction that occurs depends on the properties of the materials on both sides of the boundary. The amount of reflection is greater when the difference in the wave speeds of the two materials is greater. The amount of refraction is greater when the difference in the wave speeds of the two materials is smaller. The index of refraction is a measure of how much a material slows down the speed of a wave. The index of refraction is different for different materials. The greater the difference in the index of refraction between the two materials, the greater the amount of refraction that occurs. In general, the greater the angle of incidence, the greater the amount of reflection that occurs. The amount of reflection and refraction also depends on the wavelength of the wave.

to know more about angle of reflection visit:

https://brainly.com/question/12690019

#SPJ11

if her racket pushed on the ball for a distance of 0.12 m , what was the acceleration of the ball during her serve?

Answers

(A) She serves the ball with an average acceleration of 44 m/s². (A) The racket-ball contact takes place every 0.0025 seconds.

Part A

The average acceleration of the ball during her serve is calculated as follows:

[tex]a = \frac{v_f - v_i}{t}[/tex]

where:

a is the average acceleration of the ball (in m/s²)

[tex]v_f[/tex] is the final velocity of the ball (in m/s)

[tex]v_i[/tex] is the initial velocity of the ball (in m/s)

t is the time interval for the racket-ball contact (in s)

We know that [tex]v_f[/tex] =211 km/h=59.2 m/s and [tex]v_i[/tex] =0 m/s.

We are given that d=0.11 m. We can solve for t as follows:

[tex]t = \frac{d}{a}[/tex]

Substituting known values, we get:

[tex]t = \frac{0.11 \text{ m}}{a}[/tex]

[tex]a = \frac{0.11 \text{ m}}{t}[/tex]

We can now solve for a using the value of t that we calculated in the previous step.

[tex]a = \frac{0.11 \text{ m}}{0.0025 \text{ s}} = 44 \text{ m}/\text{s}^2[/tex]

Therefore, the average acceleration of the ball during her serve is 44 m/s².

Part B

The time interval for the racket-ball contact is calculated as follows:

[tex]t = \frac{d}{a}[/tex]

where:

t is the time interval for the racket-ball contact (in s)

d is the distance traveled by the ball during the racket-ball contact (in m)

a is the average acceleration of the ball (in m/s²)

We know that d=0.11 m and a=44 m/s

Substituting known values, we get:

[tex]t = \frac{0.11 \text{ m}}{44 \text{ m}/\text{s}^2} = 0.0025 \text{ s}[/tex]

Therefore, the time interval for the racket-ball contact is 0.0025 s.

To know more about the racket-ball refer here :

https://brainly.com/question/29312882#

#SPJ11

Complete question :

If her racket pushed on the ball for a distance of 0.11m, what was the average acceleration of the ball during her serve? Express your answer with the appropriate units The fastest server in women's tennis is Sabine Lisicki, who recorded a serve of 131 mi/h(211 km/h) in 2014 aValue Units Submit uest Answer Part B What was the time interval for the racket-ball contact? Express your answer with the approp riate units tValue Units

a coiled spring would be useful in illustrating any ________ wave.

Answers

A coiled spring would be useful in illustrating any longitudinal wave. A longitudinal wave is a type of wave where the particles of the medium vibrate in a direction parallel to the direction of wave propagation.

In a coiled spring, when it is compressed or stretched, it exhibits longitudinal wave behavior.

When the spring is compressed, it creates regions of higher density or compression, similar to the compressions in a longitudinal wave. When the spring is stretched, it creates regions of lower density or rarefaction, similar to the rarefactions in a longitudinal wave.

By observing the motion of the coils in the spring, one can visualize and understand the concepts of compression, rarefaction, wavelength, and propagation of a longitudinal wave. The coiled spring serves as a tangible and visual representation of the behavior and characteristics of longitudinal waves.

To know more about the coiled spring refer here :

https://brainly.com/question/21305363#

#SPJ11

A car travels in a circle of radius 50 meters at a constant speed of 30 km/hr. Is it accelerating?
a. No, because its speed is constant. b. No, because there is a centripetal force acting on it. c. Yes, because it is travelling in a circle, which implies its direction is changing. d. Unable to determine with given information.

Answers

A car travels in a circle of radius 50 meters at a constant speed of 30 km/hr. Yes, it is accelerating because it is traveling in a circle, which implies its direction is changing.

Acceleration is defined as any change in velocity, which includes changes in magnitude (speed) and direction. Even though the car's speed is constant, it is constantly changing its direction as it moves in a circular path. Therefore, the car is undergoing acceleration, known as centripetal acceleration, directed toward the center of the circle. A car travels in a circle of radius 50 meters at a constant speed of 30 km/hr. Yes, it is accelerating because it is traveling in a circle, which implies its direction is changing.

To learn more about Speed click here

https://brainly.com/question/28224010

#SPJ11

A 250 - Ω resistor is connected in series with a 4.80 - μF capacitor. The voltage across the capacitor is vC=(7.60V)⋅sin[(120rad/s) t ].
Derive an expression for the voltage VR across the resistor.

Answers

A 250 - Ω resistor is connected in series with a 4.80 - μF capacitor, the expression for the voltage VR across the resistor is VR = 91200C * cos[(120rad/s) t].

We may utilise Ohm's Law and the correlation between voltage and current in a capacitor to obtain the expression for the voltage VR across the resistor.

According to Ohm's Law, a resistor's voltage is equal to the current passing through it multiplied by its resistance:

VR = IR * R

iC = C * d(vC) / dt

d(vC) / dt = (7.60) * (120) * cos[(120) t]

iC = C * (7.60) * (120) * cos[(120) t]

VR = iC * R

= C * (7.60) * (120) * cos[(120) t] * 250

= 91200C * cos[(120rad/s) t]Ω

Therefore, the expression for the voltage VR across the resistor is VR = 91200C * cos[(120rad/s) t].

For more details regarding voltage, visit:

https://brainly.com/question/32002804

#SPJ4

what is the total displacement of the car after 5 h? responses 0 km 0 km 15 km 15 km 20 km 20 km 40 km

Answers

The total displacement of the car after 5 hours is 40 km.In the given data, we have a series of values representing the displacement of the car at different points in time.

The pattern observed in the data is that the car's displacement remains constant for certain intervals and then changes at specific time points. We can see that the car's displacement remains at 0 km for the first two time intervals, then changes to 15 km for the next two time intervals, and finally changes to 20 km for the last two time intervals. Since we are interested in the total displacement after 5 hours, we consider the value at the end of the last time interval, which is 20 km. Therefore, the total displacement of the car after 5 hours is 20 km.

In summary, the car's displacement remains constant at 0 km for the first two time intervals, changes to 15 km for the next two time intervals, and finally changes to 20 km for the last two time intervals. Thus, after 5 hours, the total displacement of the car is 20 km.

To learn more about displacement refer:

https://brainly.com/question/29769926

#SPJ11

Other Questions
most water pollution associated with mining operations has to do with: Current Attempt in Progress Your answer is incorrect. Cullumber Corp. had total variable costs of $247,500, total fixed costs of $193.500, and total revenues of $450,000. Compute the required sales do (True or false)Over the past two years, the prices of new cars and used carsshowed significant growth. The price increases in new and used carswere both caused by the decrease in supply due to the 5. [Chinese Remainder Theorem, 10pt] Use the method of the Chinese Remainder Theorem to solve the following problems. Show your work.a) [6pt] Find x (between 0 and 3279*1072)such thatx 1072 (3279), and x 77 (2303).b) [4pt] Find x (between 0 and 5696 * 4803 * 4531)such thatx 1072 (3279), x 77 (2303). and x 4545 (6731). (20 points) Consider the following statements. First, express each statement using quantifiers. Then form the negation of the statement so that no negation is to the left of a quantifier. Finally, express the negation in simple English. (Do not simply use the phrase "It is not the case that.") (a) There is a restaurant that serves gator tails. (b) No one can fly to the sun. (c) Someone has road rage and do not obey the speed limit. (d) No one has seen every Star Wars movie. (e) Every American knows exactly two languages. ASAP!The assertion that all valid transactions are recorded is whichof the following types of assertions.ExistenceCompletenessAccuracy and ValuationOccurrence Millions of households use fluorescent light bulbs each year. A certain brand of light bulb has a mean life of 1000 hours. A manufacturer claims that its new brand of bulbs has a mean life of more than 1000 hours. Twenty bulbs are tested, which results in a mean of 1075 hours with a standard deviation of 150 hours. Perform a test of hypothesis at the 1% level of significance. Assume the sample was taken from a normal population. x + x + x = H(t 2) cos(t 2) and x(0) = 1 andx'(0) = 1what kind of laplace inversion do you need to solveabove?(answer in terms of F(s) don't actually inverert) Which of the following are issues faced by Europeans (inside or outside the EU) today? Check all that apply.a. Sporadic warfare between France and Germanyb. Russia's attempt to expand at the expense of its neighborsc. Increasing gender inequalityd. Regional economic inequality within states such as Britain and Germany Oweninc has a current stock price of $13.30 and is expected to pay a $0.95 dividend in one year. If Oweninc's equity cost of capital is 11%, what price would Oweninc's stock be expected to sell for immediately after it pays the dividend? OA. $13,81 OB. $14.76 OC. $9 67 OD. $11.05 What is the voltage of each light bulb individually? Recall the zone out duration (ZOD) data we looked at in one of the regression lectures from Lesson 3. An additional experiment was conducted to look at the impact of sugary desserts eaten at lunch, two hours before class, and ZOD. Twelve students volunteered to participate in the experiment. Students were randomly assigned to eat a large slice of apple or cherry pie, with six participants randomized in each group. Two hours later, their ZODs (in minutes) were recorded during a 50-minute lecture. The data are in the file ZODTwoGroups.csv. a) Make a comparative boxplot for ZOD by pie type. Describe what you can get from the boxplots regarding the two distributions. Does there appear to be a difference between the ZODs for the two groups? b) Use set.seed(12) and then create 1000 permutations for the difference of mean ZOD for cherry pie minus the mean ZOD for apple pie. What is the observed difference in means for the sample data? c) Write out the statistical hypotheses, using symbols, for testing that mean ZOD for cherry pie is greater than the mean ZOD for apple pie. d) Make a histogram of the null distribution and add a vertical line for the observed sample difference. Set the number of bins to 13. Describe the shape of the null distribution and how the observed sample difference generally compares with the overall distribution. e) Calculate the p-value for this permutation test. If you set up your code correctly, you should get a p-value of 0.002. What is the meaning of this p-value as a probability? f) What do you conclude for this hypothesis test in the context of the problem? Miguel es guapo. Pedro es ms guapo. Pepe es ms guapo que Miguel y Pedro. (3 points) If there is a planned order release of 120 units in week 5 and the lead time is 2 weeks, 120 will show up in week 7 under ________.Planned Order ReceiptProjected On-hand InventoryScheduled ReceiptsAll of the above The following data represent the dividend yields (in percent) of a random sample of 26 publicly traded des Complete parts (a) to (c) 0.5 0.8 1.75 0.04 0.18 0.35 3.69 0 0.95 0 0.17 1.83 1.33 0 0.54 1.14 0.41 159 21 2.41 292 3.18 3.03 1.43 0.58 0.13 0 0.19 (a) Compute the five-number summary The five-number summary is 10000 (Round to two decimal places as needed. Use ascending order) Calculate the following probability: Given that a couple has an Education Level = 4, what is the probability that it has SC Index = 10?o0.94o17o0.06o0 Scenario: You have been asked to meet the physical growth needs of Top Dog Project Services. Company Growth Needs Top Dog Project Services is a company with several offices throughout the country. The Using the tax software, complete the tax return, including Form 1040 and all appropriate forms, schedules, and worksheets. Answer the questions following the scenario. When entering Social Security numbers (SSNs) or Employer Identification Numbers (EINs), replace the X s as directed, or with any four digits of your choice. view Notes - Kendall and Siena are married and file a joint return. - Siena is a full-time science teacher at a local public middle school. She spent $600 of her own money to purchase supplies for labs she conducted with her students. She did not receive any reimbursement for these expenses. - Kendall is a self-employed driver for Delicious Deliveries. Kendall provided a statement from the food delivery service that indicated the number of miles driven and fees paid for the year. These fees are considered ordinary and necessary for the food delivery business: - 4,786 miles driven while delivering food from 1/1/20226/30/2022 - 4,880 miles drived while delivering food from 7/1/202212/31/2022 - Insulated box rental: $300 - Vehicle safety inspection (required by Delicious Deliveries): $50 - GPS device fee: $120 - Kendall's record keeping application shows he also drove 4,833 miles between deliveries (2,393 miles from 1/1/2022-6/30/2022 and 2,440 miles from 7/1/2022-12/31/2022) and 4,062 miles (2,051 miles from 1/1/2022-6/30/2022 and 2,011 miles from 7/1/202212/31/2022 ) driven between his home and his first and last delivery point of the day. Kendall has a separate car for personal use. He bought and started using his second car for business on September 1, 2020. - Kendall also kept receipts for the following out-of-pocket expenses: - $100 on tolls - \$120 for car washes - $48 for parking tickets - $75 for Personal Protective Equipment (PPE) used during deliveries - \$150 for snacks and lunches Kendall consumed while working - Kendall provided the Form 1099-NEC and Form 1099-K that he received from Delicious Deliveries. - Kendall also received $500 in cash tips that were not reported elsewhere. - Kendall was sick with Covid-19 and was unable to work for 14 days in May 2022. - Kendall purchased virtual currency through an electronic transfer of cash from his checking account. He had no other virtual currency transactions. - The U.S. federal student loan that Siena owed for postsecondary educational expenses was forgiven in 2022. The amount of student loan canceled was $15,000. Siena cid not receive any tax form reporting this amount. - Kendall and Siena are U.S. citizens, have valid Social Security numbers, and Itvad ln se. Sinited States all year. They have not taken distributions from any retirement plans. when a wave hits a boundary, what determines how much is reflected and refracted? Identify the examples of how globalization has altered political power in the modern world.-Countries are more interdependent, and as a consequence, may cede some decision-making to multi-nation-state organizations.-Countries may face punishment for violating international treaties or agreements.