Explanation:
H=mc×∆©
9.86=m×0.902×(30.5-23.2)
m=1.5
Explanation:
The specific heat of a substance is the amount of heat required to raise the temperature of 1 gram of the substance by 1 degree Celsius. The formula for calculating the heat absorbed or released by a substance is `q = mcΔT`, where `q` is the heat absorbed or released, `m` is the mass of the substance, `c` is the specific heat of the substance, and `ΔT` is the change in temperature.
In this case, we can use this formula to solve for the mass of the aluminum sample. We know that `q = 9.86 J`, `c = 0.902 J/g°C`, and `ΔT = 30.5°C - 23.2°C = 7.3°C`. Plugging these values into the formula, we get:
`9.86 J = m * 0.902 J/g°C * 7.3°C`
Solving for `m`, we find that the mass of the aluminum sample is approximately `1.5 g`, rounded to 2 significant figures.
PLEASE mark as Brainliest
PLEASE HELP ME!!!!
TRUE or FALSE: When sperm and egg cells combine in fertilization, the
offspring ends up with the same number of chromosomes as their
parents.
Answer: False
Explanation:
Hope this help
Answer:
True.
Explanation:
Every child will contain the same number of chromosomes as the parents (otherwise they wouldn't be considered the same species). Additionally, animals can only mate with a species containing the same number of chromosomes as themselves. This means if the offspring of the parents had a different number fo chromosomes the offspring would be unable to mate with animals of it's own species.
4. Are there any solutions that have the measure of -3
? Briefly explain why.
If the Bunsen burner gave a luminous flame and some soot was deposited on
the tube, what effect would this situation have on the calculated % of oxygen ?
Explanation:
If bunsen burner gave a luminous flame then there will deposition of soot at the bottom of the test tube which is actually pure carbon.
This deposition of soot actually depicts that there is incomplete combustion reaction that has taken place.
Also, the deposition of soot will provide a limited supply of oxygen to the reaction that has been calculated.
Therefore, in order to avoid any formation of soot it is advisable to adjust the burner flame till it produces a blue flame.
Determine the molarity and mole fraction of a 1.09 m solution of acetone (CH3COCH3) dissolved in ethanol (C2H5OH). (Density of acetone
Answer:
Molarity = 0.809 M
mole fraction = 0.047
Explanation:
The complete question is
Calculate the molarity and mole fraction of acetone in a 1.09-molal solution of acetone (CH3COCH3) in ethanol (C2H5OH). (Density of acetone = 0.788 g/cm3; density of ethanol = 0.789 g/cm3.) Assume that the volumes of acetone and ethanol add.
Solution -
Solution for molarity:
1.09-molal means 1.09 moles of acetone in 1.00 kilogram of ethanol.
1)
Mass of 1.09 mole of acetone
= 1.09 mol x 58.0794 g/mol = 63.306 g
Density of acetone = 0.788 g/cm3
Thus, volume of 1.09 moles of acetone = 63.306 g/0.788 g/cm3 = 80.34 cm3
For ethanol
1000 g divided by 0.789 g/cm3 = 1267.427 cm3
Total volume of the solution = Volume of acetone + Volume of ethanol = 80.34 cm3 + 1267.427 cm3 = 1347.765 cm3 = 1.347 L
a) Molarity:
1.09 mol / 1.347 L = 0.809 M
Mole Fraction
a) moles of ethanol:
1000 g / 46.0684 g/mol = 21.71 mol
b) moles of acetone:
1.09 / (1.09 + 21.71) = 0.047
Bryce and his lab partner come up with an idea they think will save time: We just used the fast titrations. You can stop the video when the solution turns pink. We know that when the solution turns pink, the titration is complete, so we just read the volume from the burette as soon as it turns pink. This is faster than going through all the shorter videos and works just as well. Do you agree with Bryce
Answer:
Yes.
Explanation:
Yes, I agree with Bryce and his lab partner because titration is completed when the solution changes its colour. Add chemical from the burette until the solution change its colour so then calculate the amount of chemical is used from the burette and the time at which the titration is completed. Always be careful for calculating the titration in order to get accurate data of the solution.
What is Hall-Heroult process?
Answer:
... Sorry I don't know the answer
What is the mass of 25.5 L of water assuming it is at 4 degrees Celsius?
Answer:
25.5kg or about 56.2lbs
Explanation:
At 4°C pure water has a mass of about 1 kg/liter.
So, if there was 25.5 L of water it would be 25.5kg or about 56.2lbs.
Brainiest and 10 points
Which has MORE energy?
A. Radio
B. Infrared
Answer:
B. infrared
hope this helps
have a good day :)
Explanation:
Congratulations you have worked hard and now you are done with the year! I am so proud of you!
Answer:
lololol
Explanation:
10. What is the molarity of a solution containing 20 moles of NaCl dissolved in 10 liters of water?
0.5 mol/L
2 mol/L
5 mol/L
10 mol/L
Answer:
2 mol/L
Explanation:
M=Mol of solute/L. of solution
M=20mol/10L of H2O= 2mol/L
Answer:
2mol/L
Explanation:
got it correct on my quiz
compare and contrast the three types oflevers.
Answer:
The difference between the three classes depends on where the force is, where the fulcrum is and where the load is. In a first class lever, the fulcrum is located between the input force and output force. In a second class lever, the output force is between the fulcrum and the input force. write the class of lever.
Explanation:
The electrolysis of molten AlCl3 for 2.50 hr with an electrical current of 15.0 A produces ________ g of aluminum metal. Group of answer choices
Answer:
The correct answer is 12.58 grams.
Explanation:
Based on the given information, the electrolysis equation will be,
Al³⁺ + 3e⁻ ⇔ Al
1 mol of Al needs 3 moles of electron, and the value for 1 mole of electron is 96485 C.
Thus, 1 mole of Al needs 3 × 96485 C = 289455 C
Now the amount of charge passed is,
T = 2.5 hours
= 2.5 × 3600 s = 9 × 10³ s
Q = Current × Time
= 15A × 9 × 10³ s
= 13.5 × 10⁴ C
The moles of Al plated will be,
= 13.5 × 10⁴ / 289455
= 0.4664 mol
The molecular mass of Al is 26.98 grams per mole
Now the mass of Al will be,
= Number of moles × Molecular mass
= 0.4664 × 26.98
= 12.58 grams
Correct order of the levels of classification in the ecosystem
how many liters of hydrogen gas I needed to react with CS2 to produce 2.5 L of CH4 At STP
Answer:
9.8 L
Explanation:
The reaction that takes place is:
4H₂(g) + CS₂(g) → CH₄(g)+ 2H₂S(g)At STP, 1 mol of any gas occupies 22.4 L.
We calculate how many moles are there in 2.5 L of CH₄ at STP:
2.5 L ÷ 22.4 L/mol = 0.11 mol CH₄Then we convert CH₄ moles into H₂ moles, using the stoichiometric coefficients of the reaction:
0.11 mol CH₄ * [tex]\frac{4molH_2}{1molCH_4}[/tex] = 0.44 mol H₂Finally we calculate the volume that 0.44 moles of H₂ would occupy at STP:
0.44 mol * 22.4 L/mol = 9.8 LCalculate the volume of 0.07216 M AgNO3 needed to react exactly with 0.3572 g of pure Na2CO3 to produce solid Ag2CO3.
Answer:
93.4 mL
Explanation:
Let's state the reaction:
2AgNO₃ + Na₂CO₃ → Ag₂CO₃ + 2NaNO₃
We determine the moles of sodium carbonate:
0.3572 g . 1mol / 105.98g = 3.37×10⁻³ moles
Ratio is 1:2. We say:
1 mol of sodium carbonate react to 2 moles of silver nitrate
Then, our 3.37×10⁻³ moles of carbonate may react to: 3.37×10⁻³ . 2
= 6.74×10⁻³ moles
If we convert to mmoles → 6.74×10⁻³ mol . 1000 mmol / mol = 6.74 mmol
Molarity is mol/L but we can use mmol /mL
6.74 mol / volume in mL = 0.07216 M
6.74 mol / 0.07216 M = volume in mL → 93.4 mL
What is the relationship between the magnitude of Δ (crystal-field splitting energy for an octahedral crystal field) and the energy of the d-d transition for a d1 complex?
a. The energy of the d-d transition is four times as big as Δ.
b. Δ is twice as big as the energy of the d-d transition.
c. Δ is four times as big as the energy of the d-d transition.
d. Δ is equal to the energy of the d-d transition.
e. The energy of the d-d transition is twice as big as Δ.
Answer:
B
Explanation:
in some applications nickel-cadmium batteries have been replaced by nickel-zinc batteries a single nickel-cadmium cell has a voltage of 1.30 V. Based on the idfference in the standard reduction potentials of CD2 and ZN2_, what votlage would you estimate a nickel-zinc a battery would produce
Please type out all of your calculations for this dilution equation: In your vitamin C experiment, it calls for a 5% concentration of iodine. However, your 7 fluid oz. tincture of iodine contains 70% iodine. How would you dilute this
Answer:
The original7 fluid oz. 70% tincture of iodine is diluted to 98 fluid oz. to obtain a 5% solution.
Explanation:
Dilution is a technique employed in experimental sciences such as chemistry and biochemistry as well as in medicine to obtain a less concentrated solution from a more concentrated one.
The dilution formula is the most important formula required in dilution. The dilution formula is given as: C1V1 = C2V2
Where C1 is the initial concentration of the stock solution;
V1 is the volume of the stock solution required;
C2 is the final concentration of the diluted solution to be prepared;
V2 is the final volume of the diluted solution.
Using the dilution formula to determine the answer to the above question:
C1 = 70% = 0.7; V1 = 7 fluid oz.; C2 = 5% = 0.05; V2 = ?
To determine V2, it is made subject of the dilution formula:
V2 = C1V1/C2
V2 = (0.7 × 7) / 0.05
V2 = 98 fluid oz.
Therefore, the original7 fluid oz. 70% tincture of iodine is diluted to 98 fluid oz. to obtain a 5% solution.
Calculate the pOH in a solution with [H+] =9.8 • 10-3 M
The pOH of the solution containing 9.8×10⁻³ M of hydrogen ion concentration, [H⁺] is 11.99
How do i determine the pOH of the solution?First, we shall determine the hydroxide ion concentration [OH⁻] in the solution. Details below:
hydrogen ion concentration, [H⁺] = 9.8×10⁻³ MHydroxide ion concentration [OH⁻] =?[H⁺] × [OH⁻] = 10¯¹⁴
9.8×10⁻³ × [OH⁻] = 10¯¹⁴
Divide both side by 9.8×10⁻³
[OH⁻] = 10¯¹⁴ / 9.8×10⁻³
[OH⁻] = 1.02×10⁻¹² M
Finally, we shall determine the pOH of the solution. Details below:
Hydroxide ion concentration [OH⁻] = 1.02×10⁻¹² MpOH of solution =?pOH = -Log [OH⁻]
pOH = -Log 1.02×10⁻¹²
pOH = 11.99
Thus, from the above calculation, we can conclude that the pOH of the solution is 11.99
Learn more about pOH:
https://brainly.com/question/14023417
#SPJ1
I need help with my chemistry
Answer:
Single displacement
Explanation:
If the copper ion just GAINED electrons,
which process did it go through?
Reduction or
Oxidation
H
CH
ll
C C
C001
CH H
2)
C C
1
NO ,
2
BY
Answer:
hakdog
Explanation:
pangitag lainbbbsjsbshsisbsjsbshxx
what is the shape of the TeF5 anion
Answer:
There are four atoms and two lone pairs around the central atom, which corresponds to AX4E2 or square planar. The shape of XeF4 is square planar.
Explanation:
I hope it's help u
Which of these is an ion with a charge of 1+?
i. Complete the chemical reaction to show this. Make sure your equation is balanced. (2 points)
C6H12O6 + 02 →
This is the reaction of respiration. Hence, the complete reaction is:
C₆H₁₂O₆ + O₂ → 6CO₂ + 6H₂O
What is respiration?Respiration is defined as a metabolic process wherein the living cells of an organism obtain energy (in the form of ATP) by taking in oxygen and releasing carbon dioxide from the oxidation of complex organic compounds. There are two forms of respiration: aerobic and anaerobic.
Aerobic respiration occurs in the presence of oxygen, while anaerobic respiration occurs in the absence of oxygen.
Because it generates the energy required for body function, respiration is significant. It gives the cells oxygen and releases harmful carbon dioxide. Hence, the reaction of cellular respiration is:
C₆H₁₂O₆ + O₂ → 6CO₂ + 6H₂O
Learn more about respiration, here:
https://brainly.com/question/18024346
#SPJ2
Which of these half-reactions represents reduction?
I. Fe2+ → Fe3+
II. Cr2O72- → Cr3+
III. MnO4- → Mn2+
Answer: The half-reactions represents reduction are as follows.
[tex]Cr_{2}O^{2-}_{7} \rightarrow Cr^{3+}[/tex][tex]MnO^{-}_{4} \rightarrow Mn^{2+}[/tex]Explanation:
A half-reaction where addition of electrons take place or a reaction where decrease in oxidation state of an element takes place is called reduction-half reaction.
For example, the oxidation state of Cr in [tex]Cr_{2}O^{2-}_{7}[/tex] is +6 which is getting converted into +3, that is, decrease in oxidation state is taking place as follows.
[tex]Cr_{2}O^{2-}_{7} + 3 e^{-} \rightarrow Cr^{3+}[/tex]
Similarly, oxidation state of Mn in [tex]MnO^{-}_{4}[/tex] is +7 which is getting converted into +2, that is, decrease in oxidation state is taking place as follows.
[tex]MnO^{2-}_{4} + 5 e^{-} \rightarrow Mn^{2+}[/tex]
Thus, we can conclude that half-reactions represents reduction are as follows.
[tex]Cr_{2}O^{2-}_{7} \rightarrow Cr^{3+}[/tex][tex]MnO^{-}_{4} \rightarrow Mn^{2+}[/tex]Choose the group that corresponds to each element.
Alkali Metal
Alkali earth metal
Halogen
Noble gas
The group corresponding to alkali metal, alkali earth metal, halogen, and noble gas is IA,IIA, 17, 18 group respectively.
Alkali metals have one outermost electron in their valence shell. They are kept under oil and are in the group IA of the periodic table.Alkaline earth metals have two outermost electrons in their valence shell. Examples are beryllium, magnesium, etc.Halogens have seven electrons in their outermost shells. They are in the periodic table in group 17 naming fluorine to iodine.Noble gas is the one that has fulfilled electronic configuration and doesn't react with any other compound.This is present in group 18 of periodic table.Learn more about alkali metals at:
brainly.com/question/18153051
#SPJ1
Which atom has the smallest atomic radius between cesium, potassium, rubidium, and francium?
A 0.200 M solution of a week acid, HA, is 9.4% ionized. The molar concentration of H+ is 0.0188 M. the Acid-dissociation constant, Ka, for HA is...?
We are given:
Initial concentration of HA: 0.200 Molar
The acid is 9.4% ionized
Dissociation constant (α) = (Percent Ionized) / 100 = 0.094
Molar concentration of H+ = 0.0188
Let's Chill! (making the ICE box):
Reaction: HA ⇄ H⁺ + A⁻
Initial: 0.200M - -
Equilibrium: 0.200(1-α) 0.200α 0.200α
while we're here, let's confirm the given equilibrium concentration of H⁺ ions
from the table here, we can see that the equilibrium concentration of H⁺ ions is 0.200α, we know that α = 0.094
[H⁺] = 0.200α = 0.200 * 0.094 = 0.0188 M
which means that we're on the right track
We're basically scientists at this point (finding the dissociation constant):
Acid dissociation is nothing but the equilibrium constant, but for the dissociation of Acids
From the reaction above, we can write the equation of the acid dissociation constant:
Ka = [H⁺][A⁻] / [HA]
now, let's take the values from the 'equilibrium' row of the ice box the plug those in this equation
Ka = (0.200α)(0.200α) / [0.200(1-α)]
Ka = (0.200α)²/[0.200(1-α)]
plugging the value of α
Ka = (0.200*0.094)² / [0.200(0.906)]
Ka = (0.0188)² / 0.1812
Ka = 1.95 * 10⁻³
If the specific heat capacity of copper is 387 J/kg/°C, then how much energy is needed to raise the temperature of 400 g of copper from 30°C to 55°C?
Answer:
Explanation:
mass = 400 grams * [1 kg/1000 grams] = 0.400 kg
c = 387 Joules / (oC * kg)
Δt = 55 - 30 = 25 oC
E = m*c * Δt
E = 0.4 * 387 * 25
E = 3870 Joules