Answer:
The task of philosophy, for Plato, is to discover through reason (“dialectic”) the nature of the Forms, the only true reality, and their interrelations, culminating in an understanding of the most fundamental Form, the Good or the One. Aristotle rejected Plato’s theory of Forms but not the notion of form itself. For Aristotle, forms do not exist independently of things—every form is the form of some thing. A …
Explanation:
Which is developed during the process of technology design
Answer:
solution
Explanation:
A(n) __________ is developed during the process of technological design.
Suppose A=BnCm, where A has dimensions LT, B has dimensions L2T-1, and C has dimensions LT2. Then the exponents n and m have the values?A. 2; 3B. 2/3; 1/3C. 4/5; -1/5D. 1/2; 1/2E. 1/5; 3/5
Explanation:
The expression is :
[tex]A=B^nC^m[/tex]
A =[LT], B=[L²T⁻¹], C=[LT²]
Using dimensional of A, B and C in above formula. So,
[tex]A=B^nC^m\\\\\ [LT]=[L^2T^{-1}]^n[LT^2}]^m\\\\\ [LT]=L^{2n}T^{-n}L^mT^{2m}\\\\\ [LT]=L^{2n+m}T^{2m-n}[/tex]
Comparing the powers both sides,
2n+m=1 ...(1)
2m-n=1 ...(2)
Now, solving equation (1) and (2) we get :
[tex]n=\dfrac{1}{5}\\\\m=\dfrac{3}{5}[/tex]
Hence, the correct option is (E).
The values of the exponents n and m are [tex]\frac{1}{5}[/tex] and [tex]\frac{3}{5}[/tex] respectively.
The given parameters;
[tex]A = B^nC^m[/tex]
[tex]A = LT\\\\B = L^2T^{-1}\\\\C = LT^2[/tex]
The values of the given exponents "n" and "m" are calculated as follows;
[tex]LT = [L^2T^{-1}]^n[LT^2]^m\\\\LT= [L^{2n}T^{-n}][L^mT^{2m}]\\\\LT = [L^{2n + m} \ T^{2m-n}]\\\\L^1 = L^{2n + m} \\\\T^1 = T^{2m-n}\\\\1 = 2n \ + m \ ---(1)\\\\1 = 2m - n \ ---(2)[/tex]
from equation(2);
[tex]n = 2m - 1[/tex]
substitute the value of n into equation (1);
[tex]1 = 2(2m-1) + m\\\\1 = 4m - 2 + m\\\\1 = 5m - 2\\\\3 = 5m\\\\m = \frac{3}{5} \\\\n = 2m - 1\\\\n = 2(\frac{3}{5} ) - 1\\\\n = \frac{6}{5} - 1 \\\\n = \frac{1}{5}[/tex]
Thus, the values of the exponents n and m are [tex]\frac{1}{5}[/tex] and [tex]\frac{3}{5}[/tex] respectively.
Learn more here:https://brainly.com/question/24704345
A 0.0125 kg bullet strikes a 0.240 kg block attached to a fixed horizontal spring whose spring constant is 2.25*10^3N/m and sets it into oscillation with amplitude of 12.4 cm. What was the initial speed of the bullet if the two objects move together after impact?
Answer:
The value is [tex]u_1 = 236 \ m/s[/tex]
Explanation:
From the question we are told that
The mass of bullet is [tex]m_b = 0.0125 \ kg[/tex]
The mass of the block is [tex]M_B = 0.240 \ kg[/tex]
The spring constant is [tex]k = 2.25*10^{3} \ N/m[/tex]
The amplitude is [tex]A= 12.4 \ cm = 0.124 \ m[/tex]
Generally according to the conservation of momentum is
[tex]m_b u_1 + M_B u_2 = (m_b + M_B) v[/tex]
given that the block was at rest we have that
[tex]m_b u_1 = (m_b + M_B) v[/tex]
Now the angular velocity of the both bodies is mathematically represented as
[tex]w = \sqrt{\frac{k}{M_B + m_b} }[/tex]
[tex]w = \sqrt{\frac{ 2.25*10^{3}}{ 0.0125 + 0.240 } }[/tex]
[tex]w = 94.4 \ rad/s[/tex]
Given that the system after collision set into oscillation
The maximum linear velocity of the system after impact is mathematically represented as
[tex]v = A * w[/tex]
[tex]v = 94.4 *0.124[/tex]
[tex]v = 11.7 \ m/s[/tex]
From above equation
[tex]u_1 = \frac{(m_b + M_B ) * v}{m_b}[/tex]
=> [tex]u_1 = \frac{(0.240 + 0.0125) * 11.7}{ 0.0125}[/tex]
=> [tex]u_1 = 236 \ m/s[/tex]
which statement describes a characteristics of a question that can be answered through scientific inquiry?
Answer: it is constructed in such a way that possible answers can be tested
Explanation:
The statement that describes a characteristic of a question that can be answered through scientific inquiry is it can be answered through making observations. The correct option is B.
What is scientific inquiry?The goal of scientific inquiry is to establish answers for this phenomenon by a continuous and creative process of questioning, observing and inferring, experimentation, collecting and organising data, finding evidence, drawing conclusions, and repeating the experiment numerous times.
The following phrases define scientific inquiry:
Asking and responding to questions is the process of scientific research.Investigative work and data gathering are part of scientific inquiry.Similar procedures and techniques are used in a scientific investigation.Therefore, the correct option is B. It can be answered by making observations.
To learn more about scientific inquiry, refer to the link:
https://brainly.com/question/5216287
#SPJ2
The question is incomplete. Your most probably complete question is given below:
A. It can be answered by gathering opinions.
B. It can be answered through making observations
C. It must be asked by a person who is a working scientist.
D. It must have a simple “yes or “no” answer
A girl is standing in front of a magic mirror. She finds the image of her head bigger the middle portion of her body of the same size and that of the legs smaller. The order of combinations for the magic mirror from the top is
A parking lot is going to be 60 m wide and 240 m long. what dimensions could be used for a scale model of the lot?
Answer:
it is A or 20x80 cm
Explanation: DID IT ON APEX
WOO
A wooden cube of side 5cm float in water 2.0cm of its depth below the water surface and its sides are vertical calculate the density of the wood in gcm^-3. ( Density of water= 1gcm^-3)
Answer:
The density of the wooden cube is [tex]\delta= 0.4 \, \frac{g}{cm^3}[/tex]
Explanation:
Recall that the weight of the entire piece of wood that is floating must equal the weight of the displaced water in the case we have an object under flotation.
At the same time. we have a relationship between Volume (V), Weight (w) and density [tex](\delta)[/tex] given by the formula:
[tex]w=\delta\,*\,V[/tex]
Since both weights must be the same, we can write the following equation:
[tex]w_{wood} = w_{water}\\\delta *\,(5\,\,cm)^3= (\frac{1\,g}{cm^3} )\,(2\,*5^2) cm^3\\\delta= \frac{2}{5} \, \frac{g}{cm^3} \\\delta= 0.4 \, \frac{g}{cm^3}[/tex]
You leave your home at 1pm. At 3pm, you are 100 km east of your house. What was your average velocity in km/hr
Answer:
50km/h
Explanation:
Average velocity = change in distance (or distance travelled) divided by/ the change in time (or time taken.)
The change in distance has been given as 100km.
The change in time is 3pm-1pm = 2 hours.
Therefore the average velocity was 100/2 = 50km/h (to the east).
Hope this helped!
The meter was originally defined so that the period of a meter-long simple pendulum would be exactly 2.00 second. (Was your measured value close to this?) Given the relationship, T^2 alpha L (T^2 is proportional to L) what would be the length of a simple pendulum, in centimeters, with a period of exactly one second?
Explanation:
Given that,
Initial length of simple pendulum, [tex]L_1=1\ m[/tex]
Initial time period, [tex]T_1=2\ s[/tex]
We need to find the length of the simple pendulum when the period is exactly 1 second.
[tex]T_2=1\ s[/tex]
We know that the time period of simple pendulum is given by :
[tex]T=2\pi \sqrt{\dfrac{L}{g}} \\\\T\propto \sqrt{L} \\\\\dfrac{T_1}{T_2}=\dfrac{L_1}{L_2}[/tex]
Put all values and find L₂
[tex]\dfrac{T_1}{T_2}=\sqrt{\dfrac{L_1}{L_2}}\\\\L_2=\dfrac{T_2^2L_1}{T_1^2}\\\\L_2=\dfrac{1^2\times 100\ cm}{2^2\ s}\\\\L_2=25\ cm[/tex]
So, the length of the pendulum with a period of exactly one second is 25 cm.
The table shows chronological events in the life of our Sun, a medium-sized star. Place the missing events into the correct rows of the table.
Hello, I don't see a table, but I am guessing that you are referring to the one I attached (below).
Answer:
So, the correct order of events sorted chronologically is:
1. A nebula located in the Milky Way galaxy begins pulling nearby hydrogen atoms in its orbit.
2. The Nebula shrinks in its volume due to gravity, becoming denser and hotter. But, it's not hot enough for nuclear fusion.
3. The temperature in the core of the Nebula reaches 14 million Kelvin.
4. Hydrogen atoms begin shedding their electrons and colliding with one another.
5. The Sun enters the main sequence stage. The energy created as a result of its radiation begins nurturing life on planet such as Earth.
6. The Sun uses up all the hydrogen in its core.
7. The Sun expands greatly and cools. It is larger and redder.
8. The Sun completely runs out of hydrogen to fuse. Its outer layers are pushed away, and a cloud of ionized gas surrounds its core.
9. The Sun is a white dwarf with a dim glow.
Hope this helps!
You are standing on a street corner with your friend. You then travel 14.0 m due west across the street and into your apartment building. You travel in the elevator 22.0 m upward to your floor, walk 12.0 m north to the door of your apartment, and then walk 6.0 m due east to your balcony that overlooks the street. Your friend is standing where you left her. how far are you from your friend?
Answer:
The answer is "26.3 m".
Explanation:
The positive value from the x-axis is to the direction east side
The negative value from the x-axis is to the direction west side
The positive value from the y-axis is to the direction upwards side
The negative value from the y-axis is to the direction down words side
The positive value from the z-axis is to the direction southside
The negative value from the z-axis is to the direction north side
If the value is i, j, and k are the unit of the given vectors, which can be defined as follows:
[tex]\hat i, \hat -i, \hat j, \hat -j, \hat k, \hat -k[/tex]
The displacements values:
[tex]\underset{d_1}{\rightarrow} = -14 \ \hat i\\\\\underset{d_2}{\rightarrow} = 22\ \hat j\\\\\underset{d_3}{\rightarrow} = -12 \ \hat k\\\\\underset{d_4}{\rightarrow} = 6 \ \hat i\\\\[/tex]
calculating the final displacement that is [tex]\underset{d_5}{\rightarrow}[/tex]:
[tex]\Rightarrow \underset{d_1}{\rightarrow}+\underset{d_2}{\rightarrow}+\underset{d_3}{\rightarrow}+\underset{d_4}{\rightarrow}+\underset{d_5}{\rightarrow} =0\\\\\Rightarrow \underset{d_5}{\rightarrow} \ \ = -(\underset{d_1}{\rightarrow}+\underset{d_2}{\rightarrow}+\underset{d_3}{\rightarrow}+\underset{d_4}{\rightarrow})[/tex]
[tex]=- (-14 \hat i+ 22 \hat j -12 \hat k+ 6 \hat i)\\\\=- (-8 \hat i+ 22 \hat j -12 \hat k)\\\\=8 \hat i- 22 \hat j +12 \hat k\\[/tex]
[tex]|\underset{d_5}{\rightarrow}|=\sqrt{8^2 +(- 22)^2 +(12)^2 }\\\\[/tex]
[tex]= \sqrt{64 + 484 +144 }\\\\= \sqrt{208 + 484}\\\\= \sqrt{692}\\\\= 26.3 \ m[/tex]
A ball is tossed up into the air with an initial speed of 5.0. How long does it take to return to the person's hand
Answer:
Explanation:
[tex]y(t) = 5t-5t^2[/tex]
When y(t) = 0, the ball is on the hand.
[tex]0=5t-5t^2\\0=5t(1-t)\\t=0,1[/tex]
It takes 1 second.
There are several different possibilities.
==> If the 5.0 means 5 miles per hour, that's 2.24 meters per second, up.
The acceleration of gravity is 9.8 m/s down, so the ball stops, turns around, and starts falling in (2.24/9.8) = 0.229 second. Then, after is starts to fall, it takes the same amount of time to the person's hand.
Total time = 0.457 second.
==> If the 5.0 means 5 meters per second, up . . .
The acceleration of gravity is 9.8 m/s down, so the ball stops, turns around, and starts falling in (5.0/9.8) = 0.51 second. Then, after is starts to fall, it takes the same amount of time to the person's hand.
Total time = 1.02 second.
==> If the 5.0 means 5 km/minute, that's about 83.33 meters per second, up.
The acceleration of gravity is 9.8 m/s down, so the ball stops, turns around, and starts falling in (83.33/9.8) = 8.503 seconds. Then, after is starts to fall, it takes the same amount of time to the person's hand.
Total time = 17.01 seconds.
==> If the 5.0 means 5 furlongs per fortnight, that's about 0.00083 meters per second, up.
The acceleration of gravity is 9.8 m/s down, so the ball stops, turns around, and starts falling in (0.00083/9.8) = 0.000085 second. Then, after is starts to fall, it takes the same amount of time to the person's hand.
Total time = 0.00017 second.
This is why all of your numbers always need their units.
How much can having a lighted candle increase the temperature inside the shelter?
A lighted candle can increase the temperature inside a shelter by a few degrees Celsius.
A lighted candle produces heat by burning fuel. The heat from the candle is transferred to the air in the shelter by conduction, convection, and radiation. Conduction is the transfer of heat through direct contact. Convection is the transfer of heat through the movement of fluids. Radiation is the transfer of heat through electromagnetic waves.
The amount of heat that is transferred to the air in the shelter depends on the size of the candle, the number of candles, and the insulation of the shelter. The larger the candle, the more heat it will produce. The more candles, the more heat will be produced. The more insulation the shelter has, the less heat will be lost to the outside. In general, a lighted candle can increase the temperature inside a shelter by a few degrees Celsius.
To know more about the Temperature, here
https://brainly.com/question/642968
#SPJ2
An electric motor is used to operate a Carnot refrigerator with an interior temperature of 0.00 ◦C. Liquid water at 0.00 ◦C is placed into the refrigerator and transformed to ice at 0.00 ◦C. If the room temperature is 300. K, what mass of ice can be produced in one day by a 0.50 hp motor that is running continuously? Assume that the refrigerator is perfectly insulated and operates at the maximum theoretical efficiency.
Answer:
732492 g
Explanation:
Given that
Room Temperature = 300 K
Cold T = 0°C = 0 + 273 =273 K
Work done = 0.375 hp
ΔH of fusion of water is 6008 J per mol
The first thing we do is to Convert the power into J/s
Given that 1 hp = 746 W (J/s), then
0.375 hp = 0.375 * 746 W/hp
0.375 = 280 J/s
Then we find the heat per unit time
Q = (cold T / hot T - cold T ) x power
Q = [273 / (300 - 273)] * 280
Q =273/27 * 280
Q = 10.1
Q = 2831 J/s
Moles of ice per second = Q/ ΔH fusion
Moles of ice per second = 2831/6008 = Moles of ice per second = 0.471 mol /s
If we convert 1 day into second, we have
1 day = 1 day * ( 24 hours/day) * ( 60 minutes/hour) * (60 seconds/minutes)
1 * 24 * 3600 = 86400 second
moles of ice /day
0.471 mol / s ) x 86400 s / day =
40694 mols of ice
Molar mass is 18 g/mol
Mass of ice
40694 * 18 = 732492 g
Mass of ice produced per day is 732492 g
How is speed shown on a distance-time graph?
as the x value at the beginning of the line
as the x value at the end of the line
as the length of the line
as the slope of the line
Answer:
Divide the change in distance by the change in time.
Explanation: Divide the difference in y-coordinates by the difference in x-coordinates (rise/run or slope).
To my best knowledge It's D
A car travels 60 miles due West first then turns back and travels 120 miles due East in 3 hours. What is...
a) the distance traveled by car?
b) the displacement of the car?
Answer:
A. 180 milesB. 60 milesExplanation:
In this problem, we are required to solve for the total distance that the car travelled. and the displacement
A) the distance travelled by car
this can be gotten by summing all the distances the car has travelled.
i,e total distance= 60 miles+120 miles
total distance= 180 miles
B) the displacement of the car
the displacement can be gotten by subtracting the final distance from the initial distance
final distance = 120 miles
initial distance= 60 miles
displacement= 120-60= 60 miles
Why do you think the temperature does not change much during a phase change? If possible, discuss your answer with your classmates and teacher.
Answer:
Explanation:
The fact is that there exists no temperature change until a phase change is complete. That is to say, during a phase change, the energy that will be supplied is used only to separate the molecules. There is no part of it is used to increase the kinetic energy of the molecules. So its temperature will not rise, not really, since the kinetic energy of the molecules remains the same. Also, it should be noted that the average kinetic energy of the molecules does not change at the moment that melting occurs, thus the temperature of the molecules does not change.
Given the displacement vector D = (2î − 6ĵ) m, find the displacement vector (in m) R so that D + R = −5Dĵ.
Answer:
R = (-2î − 6ĵ + 10k^)m
Explanation:
We are given;
D = (2î − 6ĵ)
Now, we want to find R such that,
D + R = −5Dĵ
Plugging in (2î − 6ĵ) for D in the R equation gives;
(2î − 6ĵ) + R = -5(2î − 6ĵ)j
(2î − 6ĵ) + R = -10k + 0
This is because in vector multiplication, i × j = k and j × j = 0
Thus;
(2î − 6ĵ) + R = -10k
Making R the subject gives;
R = -2î − 6ĵ + 10k^
Thus, the displacement vector R is;
R = (-2î − 6ĵ + 10k^)m
Olivia is rolling down a hill on a skateboard and is accelerating at 2.4 m/s2. After 3 seconds, she runs into Reid at the bottom of the hill. If her initial velocity was 1.5 m/s, what was her velocity when she hit Reid?
did you ever get the answer?
Answer:
8.7
Explanation:
A=2.4m/s2 1.5m/s + (2.4m/s2)(3s)
Vi=1.5m/s 1.5m/s + 7.2
Vf=? Vf= 8.7m/s
T=3s
Describe how excavations are done.
Answer:
It includes earthwork, trenching, wall shafts, tunneling and underground
Explanation:
Helppppppppppppppppppppppppppp
Answer:
Car 2 is travelling in a much higher speed than Car 1.But they are travelling or meeting in the same acceleration
An open-end mercury manometer is connected to a low-pressure pipeline that supplies a gas to a laboratory. Because paint was spilled on the arm connected to the line during a laboratory renovation, it is impossible to see the level of the manometer fluid in this arm. During a period when the gas supply is connected to the line but there is no gas flow, a Bourdon gauge connected to the line downstream from the manometer gives a reading of 7.5 psig. The level of mercury in the open arm is 900mm above the lowest part of the manometer.
(a) When the gas is not flowing, the pressure is the same everywhere in the pipe. How high above the bottom of the manometer would the mercury be in the arm connect to the pipe?
(b) When gas is flowing, the mercury level in the visible arm drops by 25mm. What is the gas pressure (psig) at thismoment?
Answer:
A. Using
Pgauge= Pmanometer
And we know that
Pgauge= deta(hpg)
So deta h = Pgauge/density x g
So
= 7.5(6894.76/1psig)/ 13.6*10^3*9.8m/s²)
= 387.9mm
So to find height of pipe connected to the pipe we say
= h -deta h
= 900-387.97mm
=512.02mm
B. We use manometry principle
Pgas+density xg(25*10^3)-PX density{h-(H-0.25)=0
So
Finally Pgas= 6.54psig
009 10.0 points
A typical radio wave has a period of 1.5 microsecond
Express this period in seconds.
Answer in units of s.
1.5 microseconds means . . .
-- 1.5 millionths of a second
-- 1.5 x 10⁻⁶ second
-- 0.0000015 second
To find Earth's equatorial rotation speed, we should divide the circumference of Earth by a 24 hours (1 day). To find the rotation speed at any other latitude, you need the following fact: The radial distance from Earth's axis at any latitude is equal to the equatorial radius times the cosine of the latitude. (Hint: When using the cosine (cos) function, be sure your calculator is set to recognize angles in degree mode, not in radian or gradient mode.) The radius of Earth is 6380 kilometers. Vi = 1370 km/hr
Find the rotation speed for a person at latitude 35°N.
Answer:
The value is [tex]v = 1370 km /hr [/tex]
Explanation:
From the question we are told that
The radius of the Earth is [tex]R = 6380 \ km[/tex]
The latitude is [tex]35^o N[/tex]
Generally the Earth's equatorial rotation speed is mathematically represented as
[tex]v_e = \frac{C}{t}[/tex]
Here C is the circumference which is mathematically represented as
[tex]C = 2 * \pi * R [/tex]
=> [tex]C = 2 * 3.142 * 6380 [/tex]
=> [tex]C = 40091.92 [/tex]
t is the time which is mathematically represented as
t = 24 h
So
[tex]v_e = \frac{40091.92}{24}[/tex]
=> [tex]v_e = 1670.5 \ km/h[/tex]
Generally the rotation speed for a person at latitude 35°N. is mathematically represented as
[tex]v = v_e cos (35)[/tex]
=> [tex]v = 1368 [/tex]
=> [tex] v \approx 1370 km/hr [/tex]
The Moon's center is 3.9x10 m from Earth's center. The Moon is 1.5x10^8 km from the Sun's center. If the mass of the Moon is 7.3x10^22 kg, find the ratio of the gravitational forces exerted by Earth and the Sun on the Moon
Explanation:
It is given that The Moon's center is 3.9x10⁸ m from Earth's center. The moon 1.5x10⁸ km from the Sun's center. We need to find the ratio of the gravitational forces exerted by Earth and the Sun on the Moon.
The gravitational force is given by :
[tex]F=\dfrac{Gm_em_m}{r^2}[/tex]
It means [tex]F\propto \dfrac{1}{r^2}[/tex]
So,
[tex]\dfrac{F_1}{F_2}=\dfrac{r_2}{r_1}[/tex]
r₁ = 3.9x10⁸ km
r₂= 1.5x10⁸ km
So,
[tex]\dfrac{F_1}{F_2}=\dfrac{1.5\times 10^8}{3.9\times 10^8}\\\\\dfrac{F_1}{F_2}=\dfrac{5}{13}[/tex]
Hence, the ratio of the gravitational forces exerted by Earth and the Sun on the Moon is 5:13.
A cat had climbed at the top of the top of a tree. The tree is 20 meters high and the cat was 6kg. How much potential energy does the cat have?
Please hurry and thanks!
Answer:
About 1200J
(If we take gravity to be 10m/s^2)
Explanation:
U=mgh
m=6kg
g=10m/s^2
h=20m
U=(6)(10(20)=1200J
A car moves in a straight line at a speed of 55.4 km/h.
How long (in seconds) will it take the car to move 1.21 km at this speed?
55.4 km => 1hr (60 min) (60×60=120 sec)
1 km => 120 ÷ 55.4
1.21 km => (120 ÷ 55.4) × 1.21
= 2.6209 sec ( 5sf )
= 2.62 sec ( 3sf )
i hope you are able to understand my solution :))
unit of speed is derived unit..why??
Answer:
[tex] \boxed{ \sf{see \: below}}[/tex]
Explanation:
The unit of speed is metre per second or m / s. It clearly depends on two fundamental units ; unit of length ( metre ) and unit of time ( second ). Hence , m/s is a derived unit.
Hope I helped!
Best regards! :D
The unit of speed is m/s. The two terms metre and second are fundamental quantities.
As,m/s is derived from these two fundamental quantities. Therefore, Unit of speed is a derived unit.
How do you know if a boy like you?
Answer:
They cherish you
Explanation:
Answer:
They might mess with you. If you catch them looking at you they will look away quickly.
Explanation:
Excess electrons are placed on a small lead sphere with a mass of 7.70 g so that its net charge is −3.35 × 10^−9 C.A) Find the number of excess electrons on the sphere.
B) How many excess electrons are there per lead atom? The atomic number of lead is 82, and its atomic mass is 207 g/mol?
Answer:
a
[tex]N = 2.094*10^{10} \ electrons[/tex]
b
[tex]O = 9.33*10^{-13} \ electrons[/tex]
Explanation:
From the question we are told that
The mass of the lead sphere is [tex]m = 7.70g = 0.0077 \ kg[/tex]
The net charge is [tex]Q_{net} = -3.35*10^{-9} \ C[/tex]
The atomic number is [tex]u = 82[/tex]
The molar mass is [tex]M = 207 \ g/mol[/tex]
Generally the excess number of electron on the sphere is mathematically represented as
[tex]N = \frac{Q_{net}}{ e }[/tex]
Here e is the charge on the electron is [tex]e = -1.60 *10^{-19} \ C[/tex]
So
[tex]N = \frac{-3.35 *10^{-19}}{ -1.60*10^{-19}}[/tex]
[tex]N = 2.094*10^{10} \ electrons[/tex]
Generally the number of atom present is mathematically represented as
[tex]n = N_a * \frac{m}{ M}[/tex]
Here [tex]N_a[/tex] is the Avogadro's number with value [tex]N_a = 6.0*10^{23} \ atoms[/tex]
[tex]n = 6.03 *10^{23} * \frac{7.70}{ 207}[/tex]
[tex]n = 2.24 *10^{22} \ atoms [/tex]
Generally the electrons are there per lead atom is mathematically represented as
[tex]O = \frac{N}{n}[/tex]
=> [tex]O = \frac{2.24*10^{22}}{2.094*10^{10}}[/tex]
=> [tex]O = 9.33*10^{-13} \ electrons[/tex]