Answer:
If Then proof has been explained below!
Step-by-step explanation:
1.) If segment XY ║ ZW, then the 154° angle ≅ ∠2 (vertical angles)
2.) If segment XY ║ ZW, then ∠2 is complementary to ∠4
3.) If ∠2 is complementary to ∠4, then ∠4 = 28°
I hope this helps! If you have any questions, feel free to add it into the comments and please rate my answer and consider marking as brainliest!
Their 47 students need a seat on the school bus. If there are 21 student seats on a school bus. How many school buses will need to let each student have a seat?
Answer: 3 buses
Step-by-step explanation:
Answer:
Simply multiply 21 until you get a number greater than 47. In this case, 3, even though there is only a little remainder of 5 kids on one bus by themselves.
Step-by-step explanation:
pls help and show work i am so screwed if i don’t do well on this
Answer:
see in the picture mark brainliest if correct
A hot air balloon pilot begins to land her balloon. In the first minute the balloon's elevation -336 feet. In the second minute, the balloon's elevation changes by 1/16 of that amount. What is the balloon's elevation during the second minute?
Answer:
-21 Feet
Step-by-step explanation:
-336/16
The balloon's elevation during the second minute will be 21 feet.
What is Algebra?Algebra is the study of abstract symbols, while logic is the manipulation of all those ideas.
The acronym PEMDAS stands for Parenthesis, Exponent, Multiplication, Division, Addition, and Subtraction. This approach is used to answer the problem correctly and completely.
A sight-seeing balloon pilot starts to land her inflatable. In the main moment the inflatable rise - 336 feet. In the subsequent moment, the inflatable's height changes by 1/16 of that sum.
Then the balloon's elevation during the second minute is given as,
⇒ - 336 x (1/16)
⇒ - 336 / 16
⇒ - 21 feet
The balloon's elevation during the second minute will be 21 feet.
More about the Algebra link is given below.
https://brainly.com/question/953809
#SPJ2
Suppose the longest side in a right triangle has the measure 4,6. If the acute angles have the measure of 30° and 60°, which is the exact measure of the longer leg?
Is the graph shown below that of a function?
Answer:
yes
Step-by-step explanation:
Ilsa withdraws $300 from an account that had a balance of $1,000. How much interest will she earn on the remaining balance at a simple annual interest rate of 1.8% over 3 years?
Answer:
37.8
Step-by-step explanation:
1000 - 300 = 700
I = Prt
I = (700)(1.8%)(3)
I = 37.8
A box is to be wrapped in a red decorative paper. The box is 9 inches long, 5 inches wide and 4 inches high. What is the minimum amount of decorative paper needed to cover the box? *
SA= 2 (4)(5) + 2(5)(9) + 2(4)(9)
SA= 202in^2
If the box contains confetti, how much cubic inches of confetti are needed to fill the box?
V= lwh
= 4*5*9
= 180 in^3
Consider the following system of linear equations given by:
3,5x12 +23 3x1 +102 +53 3x1+3x2+7, 25x3 0: = 4; (1)
(a) Verify that the system described by Eq. (1) admits a unique solution.
(b) Determine the solution using Gaussian elimination.
(c) Determine an approximation to the solution, with 3 iterations x
(5), using the Methods of
Gauss-Jacobi and Gauss-Seidel with x(0) = [x1(0)1, x2(0), x3(0)]>= [d1, d2, d3]>, where d1 is the first digit of your code. person, d2 is the second digit of your code. of person and d3 is the third digit of your code. of person.
(d) What is the maximum error made in each of the methods? Use the estimate calculation of the
error (absolute or relative) to compose the analysis.
(e) Analyze the results found in (b) and (c), commenting on the differences.
(f) What strategy would you recommend to reduce the maximum error obtained? Justify the recommendation.
(g) Considering the results found, which method do you consider more efficient in solving of the problem?
The system of linear equations admits an unique solution.
The system of linear equations given by:
-x + 3y = 7 ------------------------(1)
2x + y = 4 ------------------------(2)
We can find whether the system of linear equations admits a unique solution or not by using any one of the methods such as elimination, substitution or matrices.
For this question, we can solve the given system of equations using the substitution method:
From Eq. (2), we get:
y = 4 - 2x ------------------------(3)
Substituting Eq. (3) into Eq. (1), we get:
-x + 3(4 - 2x) = 7
=> -x + 12 - 6x = 7
=> -7x = -5
=> x = 5/7
Substituting the value of x in Eq. (3), we get:
y = 4 - 2(5/7)
=> y = 18/7
Therefore, the unique solution of the given system of linear equations is:x = 5/7 and y = 18/7.
Thus, the given system of linear equations admits a unique solution.
#SPJ11
Let us know more about system of linear equations: https://brainly.com/question/21292369.
An electrical firm manufactures light bulbs that have a lifetime that 15 approximately normally distnbuted with a mean of 850 hours and a standard deviation of 44 hours. Test the hypothesis that 850 hours against the alternative.
Answer : The lifetime of light bulbs is approximately normally distributed with a mean of 850 hours and a standard deviation of 44 hours.
Explanation:
Given that the mean lifetime of light bulbs is 850 hours with a standard deviation of 44 hours and it is normally distributed. We need to test the hypothesis that 850 hours against the alternative.
Therefore, we need to use a hypothesis test for mean. Let us assume a null hypothesis and an alternative hypothesis for the given data.
Null Hypothesis : The null hypothesis H0 states that there is no significant difference between the mean lifetime of light bulbs and the hypothesized value of 850 hours. Mathematically, it is expressed asH0: μ = 850
Alternative Hypothesis : The alternative hypothesis Ha states that there is a significant difference between the mean lifetime of light bulbs and the hypothesized value of 850 hours. Mathematically, it is expressed asHa: μ ≠ 850Here, μ represents the population mean and is equal to 850. We know that Z-score is given as, Z = (x - μ)/σwhere x = Sample Mean, μ = Population Mean, σ = Standard Deviation
Now, we need to find the Z-score for the given data. Z = (x - μ)/σZ = (15 - 850)/44Z = -18.75As we know that the area under the curve at 5% level of significance on each tail is 0.025 and the Z-score corresponding to this is ±1.96. The rejection region is in the left tail of the curve and the right tail of the curve.
Hence the critical value of Z at 5% level of significance for a two-tailed test is ±1.96. Z critical value = ±1.96Since the calculated value of Z is less than the critical value of Z, we fail to reject the null hypothesis. Hence, we can conclude that the lifetime of light bulbs is approximately normally distributed with a mean of 850 hours and a standard deviation of 44 hours.
Learn more about Null and alternative hypothesis here https://brainly.com/question/30535681
#SPJ11
The radius of a baseball is about 9.25 inches. The radius of the Basketball is 9.55 inches. What is the
difference of the volumes between the basketball and baseball?
331.55
2734.89
333.14
364.52
Answer:
C. 333.14
Step-by-step explanation:
Both the basketball and baseball has got the shape of a sphere. So that;
volume of a sphere = [tex]\frac{4}{3}[/tex][tex]\pi[/tex][tex]r^{3}[/tex]
where r is the radius
i. Volume of the baseball = [tex]\frac{4}{3}[/tex][tex]\pi[/tex][tex]r^{3}[/tex]
= [tex]\frac{4}{3}[/tex] x [tex]\frac{22}{7}[/tex] x [tex](9.25)^{3}[/tex]
= 3315.5655
volume of the baseball = 3316.57 cube inches
ii. Volume of the basketball = [tex]\frac{4}{3}[/tex][tex]\pi[/tex][tex]r^{3}[/tex]
= [tex]\frac{4}{3}[/tex] x [tex]\frac{22}{7}[/tex] x [tex](9.55)^{3}[/tex]
= 3649.8372
Volume of the basketball = 3649.84 cube inches
The required difference = volume of basketball - volume of baseball
= 3649.84 - 3316.57
= 333.27 cube inches
The difference of the volumes of the basketball and baseball is 333.27 cube inches.
Which is missing from step 4?
Add the data for each interval.
Put a point on each line of the y-axis that has data.
Put the data in order in the table.
Create the bars.
Answer:
The answer u put in the thing is correct!
Step-by-step explanation:
2. Two points are shown on the coordinate plane. How any units apart are
Point A and Point B?*
Answer:
Step-by-step explanation:
Rolling a single six-sided di, you play a game with the following rules: if you roll an even number, you lose 1 point. If you roll a 1, you gain 1 point. If you roll a 3, you gain 3 points. If you roll a 5, you lose 4 points. After a long time continually playing the game, would you expect to have a positive point total or a negative point total?
The expected value is 0, which means that, on average, you neither gain nor lose points over the long run. This suggests that after playing the game for a long time, we would expect to have a point total close to zero.
To determine whether you would expect to have a positive or negative point total after a long time playing the game, we can calculate the expected value or average point gain/loss per roll.
Let's calculate the expected value for each outcome:
Rolling an even number:
Probability = 3/6 = 1/2,
Point gain/loss = -1
Rolling a 1:
Probability = 1/6,
Point gain/loss = 1
Rolling a 3:
Probability = 1/6,
Point gain/loss = 3
Rolling a 5:
Probability = 1/6,
Point gain/loss = -4
The expected value, we multiply each outcome's point gain/loss by its probability and sum them up
Expected Value = (1/2) × (-1) + (1/6) × 1 + (1/6) × 3 + (1/6) × (-4)
Expected Value = -1/2 + 1/6 + 1/2 - 2/3
Expected Value = 0
The expected value is 0, which means that, on average, you neither gain nor lose points over the long run. This suggests that after playing the game for a long time, you would expect to have a point total close to zero.
To know more about expected value click here :
https://brainly.com/question/29068283
#SPJ4
i need help the test is time and i have 5 min left can y'all pls help pls
Answer:
divide the figure into two parts.
area of square = side²
area of square =12²
area of square =144
area pf trapezium =1/2×(a+b)×h
area of trapezium =1/2×(12+6)×12
area of trapezium =108
area of polygon=144+108=252 unit²
in the one-way anova f test for comparing several means, the alternative hypothesis states that group of answer choicesthe population means are not all equalthe sample means are not all equalthe sample means are all differentthe sample means are all equalthe population means are all differentthe population means are all equal
The alternative hypothesis in the one-way ANOVA F test states that the population means are not all equal.
In the one-way ANOVA F test, we are comparing the means of several groups or categories. The null hypothesis assumes that all population means are equal, while the alternative hypothesis suggests that there is a difference between at least two of the population means.
The alternative hypothesis can be stated as "the population means are not all equal," indicating that there is variability or disparity among the different groups being compared.
By rejecting the null hypothesis and accepting the alternative hypothesis in the one-way ANOVA F test, we conclude that there is evidence to suggest that the means of the different groups are not equal, indicating some form of group differentiation or distinction in the underlying populations.
To learn more about one-way ANOVA, click here: brainly.com/question/29752518
#SPJ11
(-4,9);m=-1/2
Write the equation in point slope form
Answer: y-9=-1/2 x (x+4)
Step-by-step explanation:
PLEASE ACCTUALY HELP :<
Point A has the coordinates (-2,-4). Point A is reflected across the x-axis to create point 'A'. What are the coordinates of point "A"? Enter your answer in the space below.
Answer:
(-2, 4)
Step-by-step explanation:
Hopes this helps!
Fill in the blank: Let l be the line of equation (x,y)=(2,1)+t(4.3) And let Q=(-28,41) be a point in the plane. The distance from point Q to the line is:____________
To find the distance from point Q=(-28, 41) to the line represented by the equation (x, y) = (2, 1) + t(4, 3), we can use the formula for the distance between a point and a line in the coordinate plane. Therefore, the distance from point Q to the line is 233/5.
The distance between a point (x0, y0) and a line Ax + By + C = 0 is given by the formula:
d = |Ax0 + By0 + C| / √(A^2 + B^2)
In this case, we have the line represented parametrically as (x, y) = (2, 1) + t(4, 3), where t is a parameter. To use the formula, we need to convert this parametric representation to the standard form Ax + By + C = 0.
Expanding the parametric equation, we have:
x = 2 + 4t
y = 1 + 3t
From these equations, we can rearrange them to isolate t:
t = (x - 2) / 4
t = (y - 1) / 3
Setting the two expressions for t equal to each other, we get:
(x - 2) / 4 = (y - 1) / 3
Simplifying, we have:
3x - 6 = 4y - 4
4y - 3x = 2
Now we have the equation of the line in standard form. The coefficients A, B, and C are 4, -3, and 2, respectively.
To find the distance between point Q=(-28, 41) and the line, we can substitute the values into the distance formula:
d = |4(-28) + (-3)(41) + 2| / √(4^2 + (-3)^2)
Calculating the numerator and the denominator, we have:
d = |-112 - 123 + 2| / √(16 + 9)
d = |-233| / √25
d = 233 / 5
Therefore, the distance from point Q to the line is 233/5.
Learn more about parametric equation here:
https://brainly.com/question/30748687
#SPJ11
Pls help, question on picture, will do brainliest if right
no links!!!!!
Answer:
12/13
Step-by-step explanation:
side² = 13² - 5² = 169 - 25 = 144
side = √144 = 12
sin ∅ = 12/13
Justin earns a base salary of $1500 per month at
the jewelry shop. He also earns a 3% commission
on all sales. If Just sold $82,975 worth of jewelry
last month, how much would he make for the
month including his base salary and commission?
Answer: Justin earns a base salary of $1500 per month at
the jewelry shop. He also earns a 3% commission
on all sales. If Just sold $82,975 worth of jewelry
last month, how much would he make for the
month including his base salary and commission?
Step-by-step explanation: $1500 + 3% + $82,975 = 84475. 03 or 84475
Right will be marked brainlist
Answer:
the answer is 3,107.21
The answer to that question is that one
Find the surface area to the nearest whole number.
Only type in the numerical answer.
Answer:
342
Step-by-step explanation:
Given
Shape: Rectangular prism
The missing dimensions are:
[tex]Length = 5 ft[/tex]
[tex]Width = 6 ft[/tex]
[tex]Height = 12 ft[/tex]
Required
Determine the surface area
The surface area is calculated as:
[tex]Area = 2(Length * Width + Length * Height + Width *Height)[/tex]
This gives:
[tex]Area = 2(5ft* 6ft+ 5ft * 12ft+ 6ft*12ft)[/tex]
[tex]Area = 2(30ft^2+ 60ft^2+ 72ft^2)[/tex]
[tex]Area = 324ft^2[/tex]
Find the probability a randomly selected z-score is between -1 and 1.2. 0.7781 None of these 0.7019 0.7761 0.7263
To find the probability a randomly selected z-score is between -1 and 1.2, we need to use the standard normal distribution table.
A standard normal distribution table shows the area to the left of the z-score. To find the area between two z-scores, we need to find the area to the left of the larger z-score and subtract the area to the left of the smaller z-score. So, the probability that a randomly selected z-score is between -1 and 1.2 is given by: P(-1 ≤ z ≤ 1.2) = P(z ≤ 1.2) - P(z ≤ -1)
Using the standard normal distribution table, we get: P(-1 ≤ z ≤ 1.2) = 0.8849 - 0.1587 = 0.7262. Therefore, the probability that a randomly selected z-score is between -1 and 1.2 is approximately 0.7263, which is the closest option to our answer. The correct option is option D.
To know more about probability refer to:
https://brainly.com/question/27342429
#SPJ11
In comparison to where would be
located on a number line?
A.closer to 0
B.the same point
C.closer to 1
D.at 0
vocab word for this definetion
Answer:
whats the definition?
Step-by-step explanation:
(5g - 3h) - (6g + 7h)
Answer: -g - 10h
Step-by-step explanation:
(5g - 3h) - (6g + 7h)
= 5g - 3h - 6g - 7h
= 5g - 6g - 3h - 7h
= -g - 10h
(05.07 HC)
A student is assessing the correlation between the number of workers in a factory and the number of units produced daily?
Part A: Is there any correlation between the number of workers in a factory and the number of units produced daily? Justify your answer. (4 points)
Part B: Write a function that best fits the data. (3 points)
Part C: What does the slope and y-intercept of the plot indicate? (3 points)
Answer:
a) yes, because they both increase by the same increments each time. Tis can be represented by the equation y=5x+2
b) y=5x+2
c) The y-intercept represents the amount of units there were initially and the slope represents the amount of units for every worker.
At a certain college, it is estimated that at most 25% of the students ride bicycles to class. Does this seem to be a valid estimate if, in a random sample of 90 college students, 28 are found to ride bicycles to class?
Answer: The estimate is not valid based on the given sample.
Explanation:
The given information can be used to determine if the estimate is valid or not. It is estimated that at a certain college, at most 25% of the students ride bicycles to class, and a random sample of 90 college students is taken. The number of students who ride bicycles to class in the sample is 28. Therefore, to determine if the estimate is valid, the proportion of students who ride bicycles to class in the sample must be calculated. The proportion of students who ride bicycles to class in the sample is 28/90 = 0.31 ≈ 31%.The proportion of students who ride bicycles to class in the sample is greater than the estimated proportion of students who ride bicycles to class, which is 25%.
Therefore, the estimate is not valid based on the given sample. https://brainly.in/question/55350601
#SPJ11
Recall that a cycle in an undirected graph is a sequence of distinct vertices (V1, V2, ..., Vk) with k > 3 such that the edges {V1, V2}, {V2, V3},..., {Uk-1, Vk} and also {Uk, v1} all exist. (a) Design an algorithm which given an undirected connected graph determines whether the graph has a cycle. If the graph has |V| vertices and |E| edges, your algorithm should run in O([V] + El) time. (b) Justify the correctness and run-time of your algorithm.
The overall runtime of the algorithm is O(|V|+|E|). The DFS algorithm has a runtime of O(|V|+|E|), as does the main algorithm, which runs DFS for each vertex.Therefore, the algorithm has a total runtime of O(|V|+|E|).
a) Algorithm to determine if a graph has a cycle:The algorithm is implemented using DFS (Depth First Search) traversal, which starts from every vertex in the graph. During the DFS traversal, we maintain a set of vertices on the current path. We continue DFS traversal of each unvisited neighbor vertex, and if a neighbor is already on the path set, then we have found a cycle.
The algorithm to determine if a graph has a cycle is given below -Graph G(V, E)Start DFS from each vertex v in VIf DFS utility detects a cycle, then return true.
Else, return false.Let's take a look at the DFS algorithm below -DFS(vertex u)
1. Mark u as visited.
2. For every unvisited neighbor v of u, doDFS(v)
3. If v is already on the current path, return true to denote the existence of a cycle.
4. If there is no cycle, return false to denote that the graph does not contain a cycle.
The overall runtime of the algorithm is O(|V|+|E|).
The DFS algorithm has a runtime of O(|V|+|E|), as does the main algorithm, which runs DFS for each vertex.
b) Justification of the correctness and runtime of the algorithm:The algorithm provided uses a DFS traversal.
Therefore, the algorithm can detect a cycle in an undirected connected graph. If there is a cycle, then the algorithm will correctly detect it.
Since the algorithm starts DFS from each vertex, it will detect the cycle even if it starts from a vertex other than the one containing the cycle.
Therefore, it's correct.The overall runtime of the algorithm is O(|V|+|E|). The DFS algorithm has a runtime of O(|V|+|E|), as does the main algorithm, which runs DFS for each vertex.
Therefore, the algorithm has a total runtime of O(|V|+|E|).
Know more about Algorithm here,
https://brainly.com/question/28724722
#SPJ11
Solve system of equations given below using both inverse matrix (if possible) and reduced row echelon forms. (20 Points each) a) xy + 2x2 + 2x3 = 1 X1 - 2x2 + 2x3 = -3 3x1 - x2 + 5x3 = 7 - b) x1 + 2xy + 2x3 + 5x4 = 0 *1 - 2x2 + 2x2 - 4x4 = 0 3x1 - x2 + 5x3 + 2x4 = 0 3x, -2x2 + 6x3 - 3x4 = 0.
The solution to the system of equations is x1 = -(9/7)x4, x2 = (2/7)x4, x3 = -(1/7)x4, and x4 is a free variable.
a) xy + 2x2 + 2x3 = 1 X1 - 2x2 + 2x3 = -3 3x1 - x2 + 5x3 = 7
We can solve the system of equations using both inverse matrix (if possible) and reduced row echelon forms.
We begin by converting the above equations into matrix form as follows:
[xy+2x2+2x3=1] [X1-2x2+2x3=-3] [3x1-x2+5x3=7] = [1] [-3] [7]
We represent the coefficient matrix by A and the variable matrix by X.
Then we have AX = B where B = [1] [-3] [7]
To find the inverse of A.
If the inverse of A exists, we can use it to find X = A^(-1)B.
We can find the inverse of A using the formula A^(-1) = adj(A)/|A| where adj(A) is the adjugate of A and |A| is the determinant of A.
We have: det(A) = |[1,2,2;-1,-2,2;3,-1,5]| = 9adj(A) = [11,6,-4;19,9,-5;-7,-4,3]
Therefore, A^(-1) = adj(A)/|A| = [11/9,2/3,-4/9;19/9,1/3,-5/9;-7/9,-4/3,1/9]
We can use A^(-1) to find X as follows:
X = A^(-1)B = [11/9,2/3,-4/9;19/9,1/3,-5/9;-7/9,-4/3,1/9][1;-3;7] = [-5/3;1/3;2/3]
Therefore, the solution to the system of equations is x = -5/3, y = 1/3, z = 2/3.
We can also solve the system of equations using the reduced row echelon form of the augmented matrix as follows:[1,2,2,1;-1,-2,2,-3;3,-1,5,7] [R2+R1,R3-3R1] [1,2,2,1;-4,-3,4,-2;0,-7,-1,4] [R2/(-4),R3/(-7)] [1,2,2,1;1/4,1,-1,1/2;0,1,1/7,-4/7] [R1-2R2, R3-(1/7)R2] [1,0,3/2,-1/2;0,1,1/7,-4/7;0,0,0,0]
The last row of the above matrix represents the equation 0x1 + 0x2 + 0x3 + 0x4 = 0, which is an identity.
The system of equations is consistent, and we can solve for x, y, and z using the first two rows of the above matrix as follows:
x + (3/2)z = (-1/2)y + (1/7)z = (4/7)
Solving for z, we have: z = 2/3
Substituting z into the first equation, we have:
x + (3/2)(2/3) = (-1/2)x = -5/3
Substituting z into the second equation, we have:
y + (1/7)(2/3) = (4/7)y = 1/3
Therefore, the solution to the system of equations is x = -5/3, y = 1/3, z = 2/3.b) x1 + 2xy + 2x3 + 5x4 = 0 *1 - 2x2 + 2x2 - 4x4 = 0 3x1 - x2 + 5x3 + 2x4 = 0 3x, -2x2 + 6x3 - 3x4 = 0
To solve this system of equations, we begin by converting it into matrix form as follows:[1,2y,2,5;0,-2,2,-4;3,-1,5,2;3,-2,6,-3] [x1;x2;x3;x4] = [0;0;0;0]
We represent the coefficient matrix by A and the variable matrix by X.
Then we have AX = 0. Our task is to find the reduced row echelon form of the augmented matrix [A|0].
We perform the following elementary row operations to the above matrix to obtain the reduced row echelon form:[1,2y,2,5,0;0,-2,2,-4,0;3,-1,5,2,0;3,-2,6,-3,0] [R1-2yR2, R3-3R2, R4-3R2] [1,0,-2y-1,2y+5,0;0,-2,2,-4,0;0,-7,-1,14,0;0,-8,0,9,0] [R3/(-7), R4/(-8)] [1,0,-2y-1,2y+5,0;0,-2,2,-4,0;0,1,1/7,-2/7,0;0,1,0,-9/8,0] [R1+(2y+1)R3] [1,0,0,9/7,0;0,-2,0,-2/7,0;0,1,1/7,-2/7,0;0,0,0,0,0]
The last row of the above matrix represents the equation 0x1 + 0x2 + 0x3 + 0x4 = 0, which is an identity.
The system of equations is consistent, and we can solve for x1, x2, x3, and x4 using the first three rows of the above matrix as follows:
x1 = -(9/7)x4x2 = (2/7)x4x3 = -(1/7)x4
Therefore, the solution to the system of equations is x1 = -(9/7)x4, x2 = (2/7)x4, x3 = -(1/7)x4, and x4 is a free variable.
To learn more about matrix
https://brainly.com/question/28180105
#SPJ11