Given:
[tex]12\div2+(6-4)2[/tex]Required:
To find the value of the given expression.
Explanation:
Consider the given expression,
[tex]\begin{gathered} 12\div2+(6-4)\times2 \\ =6+(6-4)2 \\ =6+2\times2 \\ =6+4 \\ =10 \end{gathered}[/tex]Final Answer:
The value of the given expression is 10.
a realtor make 6% commission on each sale how much commission will the realtor earn for selling a $140,000 home
Answer:
1&3239282882819&;&39303847
Answer:
$8,400
Step-by-step explanation:
6%x140,000
find the surface area of a square pyramid with side length 3km and slant height 5km
Explanation
the surface area of a square pyramid is given by:
[tex]\begin{gathered} sa=A+\frac{1}{2}ps \\ \text{where A is the area of the base} \\ p\text{ is the perimeter of the base} \\ s\text{ is the }slant\text{ heigth} \end{gathered}[/tex]so
Step 1
area of the base
the baseis a square, so the area is
[tex]\begin{gathered} Area=side^{^2} \\ Area_{base}=3km\cdot\text{ 3}km \\ Area_{base}=\text{ 9(}km^2) \end{gathered}[/tex]Step 2
perimeter of the base
the perimeter of a square is given by:
[tex]\begin{gathered} \text{Perimeter}=\text{ 4}\cdot side \\ sp \\ \text{Perimeter}=\text{ 4}\cdot3km\text{ =12 }km \\ \text{Perimeter}=12km \end{gathered}[/tex]Step 3
finally, let
[tex]\text{slant heigth=5}km[/tex]now, replace in the formula
[tex]\begin{gathered} sa=A+\frac{1}{2}ps \\ sa=9(km^2)+\frac{1}{2}(12km)(5km) \\ sa=9(km^2)+30(km^2) \\ sa=39(km^2) \end{gathered}[/tex]therefore, the answer is
[tex]\text{ 36 }km^2[/tex]I hope this helps you
Final Grade An instructor gives four 1-hour exams and one final exam, which counts as three 1-hour exams. Find a student's grade if she received 66, 81, 99 and 86 on the 1-hour exams and 85 on the final exam. Round your answer to one decimal place if necessary.
Answer:
83.9
Explanation:
The final exam counts as three 1-hour exams. Therefore, the student's scores written in terms of 1-hour exams will be:
• One-Hour Exam: 66, 81, 99 and 86
,• Final Exam: (85 x 3)
We take the average to find the student's grade:
[tex]\begin{gathered} \text{Final Grade}=\frac{66(1)+81(1)+99(1)+86(1)+85(3)}{1+1+1+1+3} \\ =\frac{332+255}{7} \\ =\frac{587}{7} \\ =83.857 \\ \approx83.9 \end{gathered}[/tex]The student's grade will be 83.9 correct to one decimal place.
find the height of a square pyramid with V of 60 cm3 and base side length S of 6cm
Using Volume formula, the height of the square pyramid is 5 cm.
What is volume of a square pyramid?If the side of the square base of the pyramid is b and height of the pyramid be h
Volume of the square pyramid , V is given by the below formula.
V = 1/3(b²h)
Given
Volume of the square pyramid, V = 60 cm³
base side is given , b = 6 cm
let Height of the square pyramid be h
⇒ V = 1/3(b²h)
⇒ 3V = b²h
⇒3V/b² = h
⇒ 3(60)/ 6² = h
⇒ h = 180/36 = 5
Therefore, the height of the given square pyramid id 5 cm.
Also, learn more about Volume of Pyramid from the link below:
https://brainly.com/question/17615619
#SPJ1
given:m<6=m<8b l l cprove:a l l b
1) From the data, we can see that
[tex]\angle6=\angle8[/tex]is given.
2) Next,
[tex]\angle6=\angle7[/tex]since they are alternate angles.
3) By substitution, these means that
[tex]\angle7=\angle8[/tex]4) Finally, a || b since
[tex]\angle7=\angle8[/tex]this is because, angle 7 and angle 8 are corresponding angles.
Corresponding angles are angles that are on the same corner at each intersection. For instance, 2 and 6
4 and 8, 1 and 5, 3 and 7
In our case, 7 and 8 are corresponding angles
Enter the value of b when the expression 1/2x + b is equivalent to 1/4(2x+3)
Answer:
b = 3/4
Step-by-step explanation:
[tex]\frac{1}{2}x + b=\frac{1}{4} (2x+3)[/tex]
Distribute.
[tex]\frac{1}{2}x + b=\frac{1}{2} x+\frac{3}{4}[/tex]
Subtract 1/2x from both sides to isolate the b.
[tex]b=\frac{1}{2} x+\frac{3}{4}-\frac{1}{2}x[/tex]
1/2x and -1/2x cancel each other out.
[tex]b=\frac{3}{4}[/tex]
So b = 3/4
-5x + 3 > (-7x) - 12
Solve the inequality
-5x + 3 > (-7x) - 12
We want to move the variables to the left side and the numbers to the right side. The (-7x) can be eliminated from the right side by adding 7x on both sides.
Add 7x to both sides:
-5x + 3 + 7x > -12
We need to move the 3 from the left to the right side. So we subtract 3
Subtract 3 to both sides:
-5x + 7x > -12 - 3
Joining like terms:
2x > -15
Solving:
x > -15/2
The solution is every real number greater than -15/2
In interval notation, it can be written as:
[tex]\mleft(-15/2,+\infty\mright)[/tex]The left parentheses are used because the endpoint is not included in the solution
If the endpoint was included, we'd use a bracket [
Ana has two plants. From Monday to Tuesday, plant A grew 5 cm more than plant B. If the sum of the length of the two plants on Tuesday is 41 cm, how long is each plant on Tuesday?
Write a system of equations using A and B as the variables
The first equation is the sum of the lengths of the plants
[tex]A+B=41[/tex]The second equation is the relation of growth that plant A grew 5cm more than plant B
[tex]A=B+5[/tex]Insert the second equation into the first one to solve for B
[tex]\begin{gathered} A+B=41 \\ (B+5)+B=41 \end{gathered}[/tex]Solve the equation for B
[tex]\begin{gathered} 2B+5=41 \\ 2B=41-5 \\ 2B=36 \\ B=\frac{36}{2} \\ B=18 \end{gathered}[/tex]Use the value of B in the second equation to find the value of A
[tex]\begin{gathered} A=B+5 \\ A=18+5 \\ A=23 \end{gathered}[/tex]Plant A is 23 cm long on Tuesday and plant B is 18 cm long on Tuesday.
A storage bin has the shape of a cylinder with a conical top. What is the volume of the storage bin if its radius is r=5.4 ft, the height of the cylindrical portion is h=7.7 ft, and the overall height is H=16.7 ft?
The Volume of a Compound Solid
The figure consists of a cylinder and a cone, both with the same radius of r=5.4 ft. The height of the cylinder is h=7.7 ft and the total height (of cone and cylinder) is H = 16.7 ft. This means the height of the cone is hc = 16.7 - 7.7 = 9 ft.
The volume of a cylinder of height h and radius r is:
[tex]V_{\text{cyl}}=\pi\cdot r^2\cdot h[/tex]The volume of a cone of height hc and radius r is:
[tex]V_{\text{cone}}=\frac{\pi\cdot r^2\cdot h_c}{3}[/tex]Calculate the volume of the cylinder:
[tex]\begin{gathered} V_{\text{cyl}}=\pi\cdot(5.4ft)^2\cdot7.7ft \\ V_{\text{cyl}}=705.388ft^3 \end{gathered}[/tex]Calculate the volume of the cone:
[tex]V_{\text{cone}}=\frac{\pi\cdot(5.4ft)^2\cdot9}{3}=274.827ft^3[/tex]Now we add both volumes:
V = 705.388 + 274.827 = 980.215 cubic feet
Rounding to the nearest tenth:
V = 980.2 cubic feet
v=LMH for L
thankssssss .
What is a polygon with 10 sides called?dodecagonoctagontarragondecagon
I believe you start with 2.4 million has initial start value? Not sure cause it worded weirdly and English not very good
2,466,000
Here, we want to know what is to be used as the initial value
The general exponential equation should be in the form;
[tex]P=I(1+R)^n[/tex]where P is the population at a certain year
I is the initial population which is 2,466,000 in this case
R is the rate of increase
n is the number of years
The measures of the angles of a triangle are 2x, 3x, and 4x. What is the degree measure of the largest angle of the triangle?o 20°o 60°o 80°o 100°
ANSWER
[tex]80\degree[/tex]EXPLANATION
We want to find the measure of the largest angle of the triangle.
The sum of angles in a triangle is 180 degrees. This means that:
[tex]2x+3x+4x=180[/tex]Simplify the equation and solve for x:
[tex]\begin{gathered} 2x+3x+4x=180 \\ 9x=180 \\ x=\frac{180}{9} \\ x=20 \end{gathered}[/tex]The largest angle is 4x. Therefore, the measure of the largest angle is:
[tex]\begin{gathered} 4\cdot20 \\ 80\degree \end{gathered}[/tex]A freshly brewed cup of coffee has temperature 95°C in a 20°C room. When its temperature is 67°C, it is cooling at a rate of 1°C per minute.
Let y = T − Ts, where T(t) is the temperature of the coffee in degrees Celsius at time t and Ts is the temperature of the surroundings in degrees Celsius. Find the values of A (in °C) and k for y(t) = Aekt.
Find: A and k
After how many minutes is the temperature of the coffee 67°C? (Round your answer to two decimal places.)
Answer:
The temperature of coffee will reach 67 °C
The rate of temperature change is most directly related to the difference between the body temperature and room temperature.
[tex]\frac{dT}{dt} =-k(T-T1)[/tex]
This equation's solution using the initial condition
T(0) = T0
T(t) = Tr + (T0 - Tr)
At the moment, the cooling rate
k × (T(t) - Tr)
We can write that according to the text
T1 = Tr + (T0 - Tr)
Solving the system of equations generates the unknown time:
t = [tex]\frac{69-20}{1} (ln\frac{95-20}{69-20})[/tex]
t = 21 min.
Hence the coffee will reach the temperature 67°C in 21 minutes.
Learn more about Thermodynamics at
https://brainly.com/question/1604031?referrer=searchResults
#SPJ1
Determine whether the pair of polygons is similar using properties of similar polygons. Explain your reasoning.
The polygons are similar
What is a polygon?
A polygon (/pln/) in geometry is a planar figure characterized by a limited number of straight line segments joined to create a closed polygonal chain (or polygonal circuit). A polygon is defined as a bounded planar region, a bounding circuit, or both. A polygonal circuit's segments are known as its edges or sides. The vertices (plural: vertex) or corners of a polygon are the spots where two edges meet. A solid polygon's interior is sometimes referred to as its body. A polygon having n sides is known as an n-gon. A simple polygon is one that does not cross itself. Mathematicians are frequently interested simply in the bounding polygonal chains of simple polygons, and they frequently define a polygon in this manner.
The sides ratio is same in both polygons i.e. 1:2
and all the angles of the two polygons are congruent
So, the polygons are similar
To know more about polygons, click on the link
https://brainly.com/question/12622435
#SPJ9
a submarine is situated at 45 feet below sea level and sing 75 ft what is the new position of the submarine?
Given
a submarine is situated at 45 feet below sea level
the submarine sink 75 ft
so, the new position will be = 45 + 75 = 120 feet below
What are the six trigonometric ratios, and how are some of them related to each other(which are reciprocals of which)?
Consider the following right triangle:
In this triangle
x = adjacent side to the angle theta.
y = opposite side to the angle theta.
h= hypotenuse.
Now, by definition, we have the following trigonometric ratios:
[tex]\cos(\theta)=\frac{adjacent\text{ side to the angle }\theta}{hypotenuse}\text{ =}\frac{x}{h}[/tex][tex]\sin(\theta)=\frac{opposite\text{ side to the angle }\theta}{hypotenuse}=\frac{y}{h}[/tex][tex]tan(\theta)=\frac{opposite\text{ side to the angle }\theta}{adjacent\text{ side to the angle }\theta}=\text{ }\frac{y}{x}=\frac{y\text{ /h}}{x\text{ /h}}\text{ =}\frac{\sin(\theta)}{\cos(\theta)}[/tex]and according to the above trigonometric ratio, we get:
[tex]cotan(\theta)=\frac{\cos(\theta)}{\sin(\theta)}[/tex]On the other hand, we get the following reciprocals:
[tex]csc(\theta)=\frac{1}{\sin(\theta)}[/tex]and
[tex]sec(\theta)=\frac{1}{cos(\theta)}[/tex]we can conclude that the correct answer is:
Answer:The six trigonometric ratios:
[tex]\cos(\theta)=\frac{adjacent\text{ side to the angle }\theta}{hypotenuse}\text{ }[/tex][tex]\sin(\theta)=\frac{opposite\text{ side to the angle }\theta}{hypotenuse}[/tex][tex]tan(\theta)=\frac{opposite\text{ side to the angle }\theta}{adjacent\text{ side to the angle }\theta}=\text{ }\frac{\sin(\theta)}{\cos(\theta)}[/tex][tex]csc(\theta)=\frac{1}{\sin(\theta)}[/tex][tex]sec(\theta)=\frac{1}{cos(\theta)}[/tex][tex]cotan(\theta)=\frac{\cos(\theta)}{\sin(\theta)}[/tex]Jane spends $15 each time she travels the toll roads. She started the month with $240 in her toll road account. The amount, A (in dollars), that she has left in the account after r trips on the toll roads is given by the following function.
How much money does Jane have left in the account after 8 trips on the toll roads?
(b) How many trips on the toll roads can she take until her account is empty?
$120 money does Jane have left in the account after 8 trips on the toll roads and She has to make 16 trips to make her account empty.
What is Equation?
Two or more expressions with an equal sign is called equation.
Given that Jane spends $15 each time she travels the toll roads..
Jane started the month with $240 in her toll road account.
The amount, A (in dollars), that she has left in the account after r trips on the toll roads is given by the following function
A(r)=240-15r.
Now for 8 trips the amount she left is
A(8)=240-15(8)
=240-120
=120
So $120 money does Jane have left in the account after 8 trips on the toll roads.
$240/15
=16.
She has to make 16 trips to make her account empty.
Hence $120 money does Jane have left in the account after 8 trips on the toll roads and She has to make 16 trips to make her account empty.
To learn more on equations click:
https://brainly.com/question/10413253
#SPJ1
A railroad crew can lay 7 miles of track each day. They need to lay 196 miles of track. The length, L (in miles), that is left to lay after d days is given by the following function.
L (d) = 196 - 7d
(a). How many days will it take the crew to lay all the track?
(b) How many miles of track does the crew have left to lay after 19 days?
The number of miles of track does the crew have left to lay after 19 days is 63 miles.
The given equation is L (d) = 196 - 7d.
What is an equation?In mathematics, an equation is a formula that expresses the equality of two expressions, by connecting them with the equals sign =.
a) Number of days will it take the crew to lay all the track = 196/7
= 28 days
b) Number of miles of track does the crew have left to lay after 19 days
L (d) = 196 - 7d
Put d=19 in the given equation
We get L=196 - 7(19)
= 196 - 133
= 63 miles
Therefore, the number of miles of track does the crew have left to lay after 19 days is 63 miles.
To learn more about an equation visit:
brainly.com/question/14686792.
#SPJ1
which of the following graphs match the indicated rotation? Point “R” Rotated 90 degrees about the origin.
The rule for a 90° rotation about the origin is:
[tex](x,y)\rightarrow(-y,x)[/tex]then, if we select one of the points of the figure, A(-2,1), and apply the transformation,
[tex]A(-2,1)\rightarrow A^{\prime}(-1,-2)[/tex]do the same for the other three points,
[tex]\begin{gathered} B(3,3)\rightarrow B^{\prime}(-3,3) \\ C(4,0)\rightarrow C^{\prime}(0,4) \end{gathered}[/tex]select the graph with all three points.
Answer:
The correct answer is option 4.
Given points J(2,5), A(5,4), and R(4,2), graph AJAR and its reflection image across the given line.Ry-axis
after a reflection across the x-axis:
[tex]\begin{gathered} J\to(x,-y)\to J^{\prime}=(2,-5) \\ A\to(x,-y)\to A^{\prime}=(5,-4) \\ R\to(x,-y)\to R^{\prime}=(4,-2) \end{gathered}[/tex]I got -52.7 degrees but I want to make sure. thank you
The given vector is
[tex]m=\langle16,-21\rangle[/tex]The formula to find the direction angle is
[tex]\theta=\tan ^{-1}|\frac{y}{x}|[/tex]Replacing each coordinate, we have
[tex]\theta=\tan ^{-1}|\frac{-21}{16}|=52.7[/tex]Therefore, the direction angle is 52.7°, approximately.Write the correct equation for the following statement.
The quotient of x and seven is twelve
To get quotient we divide
in this case we divide x by 7 to get the quotient 12 as A RESULT
[tex]x \div 7 = 12[/tex]
HOPE THIS HELPS.
Tamarisk Corporation is considering purchasing a new delivery truck. The truck has many advantages over the company's current truck (not the least of which is that it runs). The new truck would cost $56,619. Because of the increased capacity, reduced maintenance costs, and increased fuel economy, the new truck is expected to generate cost savings of $8,100. At the end of eight years, the company will sell the truck for an estimated $28,500. Traditionally, the company has used a general rule that it should not accept a proposal unless it has a payback period that is less than 50% of the asset's estimated useful life. Thomas Anderson, a new manager, has suggested that the company should not rely only on the payback approach but should also use the net present value method when evaluating new projects. The company's cost of capital is 8%.
The cash Payback period is 6.66 years and the Net present value of the proposed investment is $5,329 (to see the calculation please refer the attached image.)
Computation of Payback Period
Cash Payback Period = Cost of truck/Annual cost savings.
Given that-
Cost of truck = $56,619
Annual cost savings = $8,100
Putting values, we get-
Cash payback period = ($56,619/$8,100) cash payback period
cash payback period = 6.66 years.
To calculate the PVF at 8% below is the formula
P = (1/[tex](1+r)^{n}[/tex])
Where,
P = the Present Value Factor.
r = the interest rate
n = the number of periods over which payments are made.
To calculate the Present Value = PVF at 8% x Amount.
Hence, As the Net Present Value is positive, Tamarisk corporation should purchase the truck.
Learn more about Net Present Value here https://brainly.com/question/18848923
#SPJ9
which function can be used to find y, total amount saved in, x weeks
Input data
Points
A = (0, 50)
B = (30,110)
First of all, remember what the equation of a line is:
y = mx+b
Where:
m is the slope, and
b is the y-intercept
[tex]\begin{gathered} m=\frac{110-50}{30-0} \\ m=\frac{60}{30} \\ m=2 \end{gathered}[/tex]Now, what about b, the y-intercept?
[tex]\begin{gathered} b=y-mx \\ b=50-2\cdot0 \\ b=50 \end{gathered}[/tex]The equation of the line that passes through the points
[tex]y=2x+50[/tex]12 is 58% of what number?
Also can you explain how to solve these problems?
Answer:
20.68976
Step-by-step explanation:
Convert the percentage into decimal :
58% = 0.58
0.58 × x = 12
Divide both sides by 0.58 :
x = 12÷0.58
x = 20.689655...
x = 20.68976
So the method to these types of question is to make the question into an equation by converting the percentage into a decimal, rearrange to make the unknown number the subject and solve .
Hope you understood and have a good day
Middle School Debate Club 30% members are in 6th grade. If there are 12 6th graders in The Debate Club, how many total members are there ?
We know that 30% of the members are in 6th grade, and add up to 12 members.
Lets X be the total members.
Then 0.3*X are in 6th grade, and this is equivalent to 12 members.
NOTE: 0.3 is the decimal form of 30%.
We can write:
[tex]\begin{gathered} 0.3\cdot X=12 \\ X=\frac{12}{0.3} \\ X=40 \end{gathered}[/tex]Answer: there are 40 members in the Debate Club.
1. What would the slope of a line that is parallel to the line in the graph be?
(4,3)
X
keeping in mind that parallel lines have exactly the same slope, let's check for the slope of the line above, since a parallel line will have the same slope anyway
[tex](\stackrel{x_1}{4}~,~\stackrel{y_1}{3})\qquad (\stackrel{x_2}{1}~,~\stackrel{y_2}{-1}) ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{-1}-\stackrel{y1}{3}}}{\underset{run} {\underset{x_2}{1}-\underset{x_1}{4}}} \implies \cfrac{ -4 }{ -3 } \implies {\Large \begin{array}{llll} \cfrac{ 4 }{ 3 } \end{array}}[/tex]
Yaritza finds some nickels and pennies in her change purse. How many coins does she have if she has 140 nickels and 130 pennies? How many coins does she have if she has nn nickels and pp pennies?
As per given by the question,
There are given that 140 nickels and 130 pennies.
Now,
The number of nickels is 140 and number of pennies is 130.
So,
The total number of coin is:
[tex]140+130=270[/tex]Hence, 270 coins does she have if she has 140 nickels amd 130 pennies.
And,
The total coint that have n nickels and p pennies is:
[tex]n+p[/tex]The asnwer is:
[tex]\begin{gathered} (a)\text{ 270 coins} \\ (b)\text{ n+p coins} \end{gathered}[/tex]At the ice cream factory you manage you have a rush order for 1200 gallons of wainut fudge ice cream. One machine can produce 100 gallons of ice cream every 80 minutes. If you start production on that machine at 6:00 am, about what time will be production run end end?
Given that the machine takes 80 minutes to produce 100 gallons of ice cream, so the rate of production (r) is given by,
[tex]\begin{gathered} r=\frac{100}{80} \\ r=1.25\text{ gallons/min} \end{gathered}[/tex]So the time required to produce 1200 gallons of the ice cream is calculated as,
[tex]\begin{gathered} t=\frac{1200}{r} \\ t=\frac{1200}{1.25} \\ t=960\text{ min} \end{gathered}[/tex]Thus, 960 minutes are required for producing 1200 gallons of ice cream.
Converting into hours,
[tex]\begin{gathered} 960\text{ minutes=}\frac{960}{60}\text{ hours} \\ 960\text{ minutes=}16\text{ hours} \end{gathered}[/tex]The time 16 hours after 6:00 am will be 22:00 which corresponds to 10:00 pm.
Therefore, the product run will end at 10:00 pm.