Jonah has two small bags of assorted doughnuts. Each bag contains exactly 8 powdered doughnuts.
Bag 1 contains 20 total doughnuts.
Bag 2 contains 24 total doughnuts.
What is the probability of Jonah grabbing
a powdered doughnut from
Bag 1?

Answers

Answer 1

Answer:

There is a 40% probability of Jonah grabbing  a powdered doughnut from  Bag 1.

Step-by-step explanation:

Total number of doughnuts in the bag 1 =20

Total powdered doughnuts in each bag = 8

Probability of selecting powdered doughnut from  Bag 1 by Jonah =

[tex]\frac{8}{20} * 100\\40[/tex]%


Related Questions

The time it takes for someone to finish a bowl of ramen can be modeled by a random variable with the following moment generating function: 

M(t)= 1/ (1−0.05t​)1​,t<0.05 


Find the variance of the time it takes for someone to finish a bowl of ramen.

Answers

Therefore, the variance of the time it takes for someone to finish a bowl of ramen is 4.6875.

Given, The moment generating function of the time it takes for someone to finish a bowl of ramen is

M(t)= 1/ (1−0.05t​)1​,t<0.05 We have to find the variance of the time it takes for someone to finish a bowl of ramen.

The variance of the random variable can be calculated by the formula Variance = M''(0) - [M'(0)]^2 where M(t) is the moment generating function of the random variable M'(t) is the first derivative of M(t)M''(t) is the second derivative of M(t)

We need to find M''(t) and M'(t)M(t) = 1/(1 - 0.05t)M'(t) = [0.05/(1 - 0.05t)^2]M''(t) = [0.1/(1 - 0.05t)^3] Now, at t = 0, M(0) = 1, M'(0) = 1.25, M''(0) = 6.25 Variance = M''(0) - [M'(0)]^2 Variance = 6.25 - (1.25)^2 Variance = 6.25 - 1.5625 Variance = 4.6875

To Know more about variance visit:

https://brainly.com/question/30044695

#SPJ11

Given: The time it takes for someone to finish a bowl of ramen can be modeled by a random variable with the following moment generating function: M(t)= 1/ (1−0.05t​)1​,t<0.05. The variance of the time it takes for someone to finish a bowl of ramen is 400.

The moment generating function of a random variable is defined as [tex]$M(t) = \mathbb{E}(e^{tX})$[/tex] for all t in an open interval around 0 which X is a random variable.

We are given that the moment generating function of the random variable T is given by:

[tex]$$M(t)= \frac{1}{1-0.05t} ,\ t < 0.05$$[/tex]

The [tex]$n^{th}$[/tex] derivative of M(t) at 0 is given by:

[tex]$$\frac{d^n}{dt^n} M(t) \biggr|_{t=0} = \mathbb{E}(X^n)$$[/tex]

We differentiate $[tex]M(t)$[/tex] with respect to $t$ to get [tex]$$M'(t) = \frac{0.05}{(1 - 0.05t)^2}$$[/tex].

Differentiating [tex]$M'(t)$[/tex] with respect to [tex]$t$[/tex] we get [tex]$$M''(t) = \frac{2(0.05)^2}{(1-0.05t)^3}$$[/tex].

Differentiating [tex]$M''(t)$[/tex] with respect to [tex]$t$[/tex] we get [tex]$$M'''(t) = \frac{6(0.05)^3}{(1-0.05t)^4}$$[/tex].

Substituting t = 0, we get [tex]$$M'(0) = \frac{1}{0.05} = 20$$[/tex]

[tex]$$M''(0) = \frac{2}{(0.05)^3} = 800$$[/tex]

[tex]$$M'''(0) = \frac{6}{(0.05)^4} = 4800$$[/tex]

Using the following formula to calculate the variance of X: [tex]$$Var(X) = \mathbb{E}(X^2) - [\mathbb{E}(X)]^2$$[/tex], where [tex]$$\mathbb{E}(X^2) = M''(0) = 800$$[/tex].

[tex]$$[\mathbb{E}(X)]^2 = [M'(0)]^2 = 400$$[/tex]

Hence, we get:$$Var(X) = 800 - 400 = \boxed{400}$$.

To know more about Moment generating function, visit:

https://brainly.com/question/30763700

#SPJ11

In each case, write the principal part of the function at its isolated singular points and determine whether that point is a removable singular point, an essential singular point or a pole (please also determine the order m for a pole). Then calculate the residue of the corresponding singular point. a) ( nett for isolatod singular point = = -1 b) (x - 1)2022 exp(-) for isolated singular point = 1.

Answers

The principal part at the isolated singular point -1 is not provided, so we cannot determine its nature or residue. And b) The principal part at the isolated singular point 1 is (x - 1)^2022 exp(-1). It is a pole of order 2022, and its residue is 0.

a) The principal part at the isolated singular point -1 is not provided, so we cannot determine its nature (removable singular point, essential singular point, or pole) or calculate its residue without additional information.

b) The given function is (x - 1)^2022 exp(-1). At the isolated singular point x = 1, the principal part of the function is (x - 1)^2022 exp(-1). Here, (x - 1)^2022 represents the pole part of the function, and exp(-1) represents the non-pole part.

Since the term (x - 1)^2022 dominates near x = 1, we can conclude that x = 1 is a pole. The order of the pole is determined by the exponent of (x - 1), which is 2022 in this case.

To calculate the residue, we need more information about the function, specifically the coefficients of the Laurent series expansion near the singular point. Without that information, we cannot determine the residue at x = 1.

To learn more about “The Laurent series” refer to the https://brainly.com/question/32312802

#SPJ11

How many solutions does this equation have? 9z = –8 + 7z
-no solution
-one solution
-infinitely many solutions

Answers

Answer:

one solution.            

Do males or females feel more tense or stressed out at work? A survey of employed adults conducted online by a company on behalf of a research organization revealed the data in the contingency table shown to the right. Complete parts (a) through (d) below. Felt Tense or Stressed Out at Work Yes No Total Gender Male 100 200 300 Female 145 125 270 Total 245 325 570 a. What is the probability that a randomly selected​ person's gender is​ female?
b. What is the probability that a randomly selected person feels tense or stressed out at work and is​ female?
c. What is the probability that a randomly selected person feels tense or stressed out at work or is​ female?
d. Explain the difference in the results in​ (b) and​ (c).

Answers

A survey of employed adults conducted online by a company on behalf of a research organization revealed the data in the contingency table is as follows:

a) The probability that a randomly selected​ person's gender is​ female is 270/570 or 0.474, which is approximately 47.4%.Formula used: P (Female) = Number of Females/Total Number of Individuals

b) The probability that a randomly selected person feels tense or stressed out at work and is​ female is 145/570 or 0.254, which is approximately 25.4%. Formula used: P (Female and Tense) = Number of Females who are Tense/Total Number of Individuals

c) The probability that a randomly selected person feels tense or stressed out at work or is​ female is: P (Female or Tense) = P(Female) + P(Tense) - P(Female and Tense)P(Tense) = (245/570) or 0.43, which is approximately 43%P(Female or Tense) = 0.47 + 0.43 - 0.254 = 0.646, which is approximately 64.6%.

d) The distinction between the outcomes in​ (b) and​ (c) is that the former shows the likelihood of being female and tense at work, whereas the latter shows the likelihood of being female or tense at work.

To know more about probability refer to:

https://brainly.com/question/27940823

#SPJ11

If You Have NO EXPLANATION Don't ANSWER

Answers

Answer:

B. A = 1/2(7)h

Step-by-step explanation:

Formula for area of triangle = 1/2 x base x height

H is the height of the triangle.

7cm is identified as the base of the triangle.

1/2(7)h is also the same thing as 1/2 x 7 x h basically.

Answer:

B

Step-by-step explanation:

The area (A) of a triangle is calculated as

A = [tex]\frac{1}{2}[/tex] bh ( b is the base and h the perpendicular height )

Here b = 7 and h = h , then

A = [tex]\frac{1}{2}[/tex] (7) h → B

If f is any function, then the associated Green's Function G[f] is given by G[f](x) = integral ^x_0 f(s) sin(x - s)ds. Use variation of parameters to show that G[f] is a solution of y" + y = f(x).

Answers

We have: u''(x) = ƒ(x)cot(x) - 2u'(x)cot(x).Thus, we can find a particular solution of this differential equation by using variation of parameters.

Let G(x) = ƒ(s)sin(x - s) ds.

Then, by the product rule, we have: G' = ƒ(s)cos(x - s) ds - ƒ(s)sin(x - s) ds, and G'' = -ƒ(s)sin(x - s) ds - ƒ(s)cos(x - s) ds. Hence, we have:G'' + G = ƒ(s)sin(x - s) ds - ƒ(s)cos(x - s) ds + ƒ(s)sin(x - s) ds = ƒ(s)sin(x - s) ds = G.

So, G is indeed a solution of y'' + y = ƒ(x).Next, we will use variation of parameters to find a second solution of the same differential equation.

Let us suppose that we have another solution of the form y = u(x) sin(x).

Then, y' = u(x)cos(x) + u'(x)sin(x), and y'' = - u(x)sin(x) + 2u'(x)cos(x) + u''(x)sin(x).

Substituting these into the differential equation, we get:- u(x)sin(x) + 2u'(x)cos(x) + u''(x)sin(x) + u(x)sin(x) = ƒ(x)2u'(x)cos(x) + u''(x)sin(x) = ƒ(x)

Dividing by sin(x), we get:2u'(x)cot(x) + u''(x) = ƒ(x)cot(x).

Now, let us assume that the second solution is of the form y = u(x)sin(x), where u is a function to be determined.

Then, we have: y' = u(x)cos(x) + u'(x)sin(x) and y'' = - u(x)sin(x) + 2u'(x)cos(x) + u''(x)sin(x).

Substituting these into the differential equation, we get: - u(x)sin(x) + 2u'(x)cos(x) + u''(x)sin(x) + u(x)sin(x) = ƒ(x)2u'(x)cos(x) + u''(x)sin(x) = ƒ(x)

Dividing by sin(x), we get:2u'(x)cot(x) + u''(x) = ƒ(x)cot(x).

Hence, we have: u''(x) = ƒ(x)cot(x) - 2u'(x)cot(x).Thus, we can find a particular solution of this differential equation by using variation of parameters.

Know more about differential equation here,

https://brainly.com/question/32538700

#SPJ11

Help please show work how to get the answer.

Answers

Answer:

A or D

Step-by-step explanation:

Simplify. Use only one symbol between terms. Use standard form. 6x + 3 - 8 + x

Answers

Answer:

7 is the answer

Step-by-step explanation:

Because 6x + 3 -8 + x = x is 6

FILL in the blank:AB E M nxn (R) (i) det (A.B) = ____________ . (ii) A is invertible if and only if _____________ .

Answers

Answer:

For square matrices A and B of equal size, the determinant of a matrix product equals the product of their determinants: det (A.B) = det (A) det (B) 1. A is invertible if and only if its determinant is nonzero 1.

Step-by-step explanation:

A continuous random variable is said to have a Laplace(μ, b) distribution if its probability density function is given by

fX(x)= 1 exp(−|x−μ|), 2b b

where μ is a real number and b>0.
(i). If X ∼ Laplace(0,1), find E(X) and Var(X).
(ii). If X ∼ Laplace(0,1) and Y = bX + μ, show Y ∼ Laplace(μ, b). (iii). If W ∼ Laplace(2,8), find E(W) and Var(W).

Answers

(i) For X ~ Laplace(0,1):

E(X) = 0, Var(X) = 2.

(ii) If X ~ Laplace(0,1) and Y = bX + μ:

Y ~ Laplace(μ, b).

(iii) For W ~ Laplace(2,8):

E(W) can be approximated numerically.

Var(W) = 128.

(i) If X ~ Laplace(0,1), we need to find the expected value (E(X)) and variance (Var(X)).

The Laplace(0,1) distribution has μ = 0 and b = 1. Substituting these values into the PDF, we have:

fX(x) = (1/2) * exp(-|x|)

To find E(X), we integrate x * fX(x) over the entire range of X:

E(X) = ∫x * fX(x) dx = ∫x * [(1/2) * exp(-|x|)] dx

Since the Laplace distribution is symmetric about the mean (μ = 0), the integral of an odd function over a symmetric range is zero. Therefore, E(X) = 0 for X ~ Laplace(0,1).

To find Var(X), we use the formula:

Var(X) = E(X^2) - [E(X)]^2

First, let's find E(X^2):

E(X^2) = ∫x^2 * fX(x) dx = ∫x^2 * [(1/2) * exp(-|x|)] dx

Using the symmetry of the Laplace distribution, we can simplify the integral:

E(X^2) = 2 * ∫x^2 * [(1/2) * exp(-x)] dx (integral from 0 to ∞)

Solving this integral, we get:

E(X^2) = 2

Now, substitute the values into the variance formula:

Var(X) = E(X^2) - [E(X)]^2 = 2 - 0 = 2

Therefore, for X ~ Laplace(0,1), E(X) = 0 and Var(X) = 2.

(ii) To show that Y = bX + μ follows a Laplace(μ, b) distribution, we need to find the probability density function (PDF) of Y.

Using the transformation method, let's express X in terms of Y:

X = (Y - μ)/b

Now, calculate the derivative of X with respect to Y:

dX/dY = 1/b

The absolute value of the derivative is |dX/dY| = 1/b.

To find the PDF of Y, substitute the expression for X and the derivative into the Laplace(0,1) PDF:

fY(y) = fX((y-μ)/b) * |dX/dY| = (1/2) * exp(-|(y-μ)/b|) * (1/b)

Simplifying this expression, we get:

fY(y) = 1/(2b) * exp(-|y-μ|/b)

This is the PDF of a Laplace(μ, b) distribution, thus showing that Y ~ Laplace(μ, b).

(iii) For W ~ Laplace(2,8), we need to find E(W) and Var(W).

The PDF of W is given by:

fW(w) = (1/16) * exp(-|w-2|/8)

To find E(W), we integrate w * fW(w) over the entire range of W:

E(W) = ∫w * fW(w) dw = ∫w * [(1/16) * exp(-|w-2|/8)] dw

This integral can be challenging to solve analytically. However, we can approximate the expected value using numerical methods or software.

To find Var(W), we can use the property that the variance of the Laplace distribution is given by 2b^2, where b is the scale parameter.

Var(W) = 2 * b^2

= 2 * (8^2)

= 2 * 64

= 128

Therefore, Var(W) = 128 for W ~ Laplace(2,8).

Know more about the Laplace distribution click here:

https://brainly.com/question/30759963

#SPJ11

25
What is the solution to the equation 12(x+5) = 4x?

Answers

Answer:

x = -7.5

Step-by-step explanation:

12(x+5) = 4x

12x+ 60 = 4x

60 = -8x

-7.5 = x

A donut has a diameter of 7 in. What is the radius?

Answers

Answer:

The radius is 3.5 inches I think.

Step-by-step explanation:

Hope this helped Mark BRAINLIEST!!!

Answer:

3.5

Step-by-step explanation:

You would simply divide 7 inches by 2 because the radius is one-half the measure of the diameter.

find the hcf of px4 + px ,qx3 _ qx ​

Answers

Step-by-step explanation:

1st expression

= px^4 + px

= px ( x³ + 1 )

= px ( x + 1) (x² - x + 1)

2nd expression

= qx³ - qx

= qx ( x² - 1 )

= qx ( x + 1) ( x - 1)

HCF = x ( x + 1)

Hope it will help :)❤

What is the range of the function shown on the graph above? The graph is in the photo
OA. -6 < y < 9
OB. -6 _< y _< 9
OC. 0 _< y _< 7
OD. 0 < y < 7

Answers

The answer is OA. 6 & it; y & it; 9

What is the vertex of f(x) = -2|x + 1| + 2?

Answers

Answer:

(-1,2) i think

Step-by-step explanation:

The highest temperature in Las Vegas is 125 degrees Fahrenheit and the lower recorded temperature in Las Vegas is 50 degrees Fahrenheit below zero what is the difference between these two temperatures

Answers

Answer:

175 degrees Fahrenheit

Step-by-step explanation:

We are to find the difference between the two temperatures

125 - (-50)

two minuses gives a plus

125 = 50 = 175

what is the price of a $600 bike 15% off

Answers

Answer: You will pay $510 for a item with original price of $600 when discounted 15%.

The American Hospital Association stated in its annual report that the mean cost to community hospitals per patient per day in U.S. hospitals was $1231 in 2007. In that same year, a random sample of 25 daily costs in the state of Utah hospitals yielded a mean of $1103. Assuming a population standard deviation of $252 for all Utah hospitals, do the data provide sufficient evidence to conclude that in 2007 the mean cost in Utah hospitals is below the national mean of $1231? Perform the required hypothesis test at the 5% significance level.

Answers

We can conclude that the null hypothesis is rejected. There is sufficient evidence to support the claim that the mean cost in Utah hospitals is below the national mean of $1231.

How is this so?

H₀: μ ≥ 1231 (The mean cost in Utah hospitals is greater than or equal to the national mean)

Hₐ: μ < 1231 (The mean cost in Utah hospitals is below the national mean)

Given

Sample mean (x) = $1103Sample size (n) = 25Population standard deviation (σ) = $252Significance level (α) = 0.05

The test statistic for a one-sample t-test is given by

t = (x - μ) / (σ / √n)

Substituting we have

t = (1103 - 1231) / (252 / √25)

≈ -6.103

To determine the critical value, we need to find the critical t-value at the 5% significance level with degrees of freedom

(df) equal to (n - 1)

= (25 - 1)

= 24.

Using a t-distribution table or calculator, the critical value is approximately -1.711.

Since the calculated test statistic (-6.103) is smaller than the critical value (-1.711) and falls into the critical region, we reject the null hypothesis.

Learn more about standard deviation  at:

https://brainly.com/question/475676

#SPJ4

The cost of renting a bicycle, y, for
x hours can be modeled by a linear
function. Renters pay a fixed insurance
fee of $12 plus an additional cost of $10
per hour, for a maximum of 6 hours.
What is the range of the function for this
situation?
F {22, 32, 42, 52, 62, 72}
G {1, 2, 3, 4, 5, 6}
H {12, 24, 36, 48, 60, 72}
J {22, 34, 46, 58, 70, 82}

Answers

Answer:

F

Step-by-step explanation:

1(10) + 12= 22

2(10) + 12= 32

etc.....

y= 2x-3
y= x+4
Graph each system and determine the number of the solutions that it has. If it has one solution, name it.

Answers

x=7
y=11
basically just put the equations together because they are both equal to y

2x-3 = x+4
then just evaluate that and you’ll find x
after just input the answer into one of the equations and then you get your answers
i hope this help!!

O There were 9 bags of
candy donated for the
neighborhood party.
Each bag contained
245 pieces. How much
candy did they have
for the party?

Answers

9*245 =2205
hope this helps

Help pls it is my homework
Can y'all help me?

Answers

Answer:

A

Step-by-step explanation:

the mean is what occurs most often

Simplify the expression completely.

Answers

You can’t simplify it any further. 288 1/4 is already simplified.

i have now attached the picture but it can be wrong!

Find the point at which the line intersects the given plane. x = 2 - 2t, y = 3t, z = 1 + t: x + 2y - z = 7 (x, y, z) = Consider the following planes. 4x - 3y + z = 1, 3x + y - 4z = 4 (a) Find parametric equations for the line of intersection of the planes.

Answers

The parametric equations for the line of intersection of the planes 4x - 3y + z = 1 and 3x + y - 4z = 4 are:

x = (208 + 70t) / 52

y = (13 + 19t) / 13

z = t

To find the parametric equations for the line of intersection of the planes 4x - 3y + z = 1 and 3x + y - 4z = 4, we can solve these two equations simultaneously.

Step 1: Set up a system of equations:

4x - 3y + z = 1

3x + y - 4z = 4

Step 2: Solve the system of equations to find the values of x, y, and z. One way to solve the system is by using the method of elimination:

Multiply the first equation by 3 and the second equation by 4 to eliminate the y term:

12x - 9y + 3z = 3

12x + 4y - 16z = 16

Subtract the first equation from the second equation:

12x + 4y - 16z - (12x - 9y + 3z) = 16 - 3

12x + 4y - 16z - 12x + 9y - 3z = 13y - 19z = 13

Step 3: Express y and z in terms of a parameter, let's call it t:

13y - 19z = 13

y = (13 + 19z) / 13

We can take z as the parameter t:

z = t

Substituting the value of z in terms of t into the equation for y:

y = (13 + 19t) / 13

Step 4: Express x in terms of t:

From the first equation of the original system:

4x - 3y + z = 1

4x - 3((13 + 19t) / 13) + t = 1

4x - (39 + 57t) / 13 + t = 1

4x - (39 + 57t + 13t) / 13 = 1

4x - (39 + 70t) / 13 = 1

4x = (39 + 70t) / 13 + 1

x = ((39 + 70t) / 13 + 13) / 4

x = (39 + 70t + 169) / 52

x = (208 + 70t) / 52

Therefore, the parametric equations for the line of intersection of the planes 4x - 3y + z = 1 and 3x + y - 4z = 4 are:

x = (208 + 70t) / 52

y = (13 + 19t) / 13

z = t

Learn more about parametric equations:

https://brainly.com/question/30451972

#SPJ11

a uniform solid disk of mass m = 2.91 kg and radius r = 0.200 m rotates about a fixed axis perpendicular to its face with angular frequency 5.94 rad/s.

Answers

A uniform solid disk with a mass of 2.91 kg and a radius of 0.200 m is rotating about a fixed axis perpendicular to its face with an angular frequency of 5.94 rad/s.

The angular frequency of an object rotating about a fixed axis represents the rate at which it completes one full revolution in radians per second. In this case, the disk has an angular frequency of 5.94 rad/s.

The moment of inertia of a uniform solid disk rotating about its axis can be calculated using the formula:

I = (1/2) * m * [tex]r^2[/tex]

where I is the moment of inertia, m is the mass of the disk, and r is the radius of the disk. Substituting the given values, we have:

I = (1/2) * 2.91 kg * [tex](0.200 m)^2[/tex]= 0.0582 kg·[tex]m^2[/tex]

The moment of inertia is a measure of an object's resistance to changes in rotational motion. In this case, the disk's moment of inertia is 0.0582 kg·[tex]m^2[/tex].

The angular frequency, moment of inertia, and mass of the disk are related by the equation:

I * ω = L

where ω is the angular frequency and L is the angular momentum. Rearranging the equation, we can solve for the angular momentum:

L = I * ω = 0.0582 kg·[tex]m^2[/tex] * 5.94 rad/s = 0.3456 kg·[tex]m^2[/tex]/s

Therefore, the angular momentum of the rotating disk is 0.3456 kg·[tex]m^2[/tex]/s.

Learn more about radians per second here:

https://brainly.com/question/29751103

#SPJ11

A 12ft basketball hoop casts an 8 ft shadow. Find the length of the shadow of a 4 ft tall fence.

Answers

Set up a ratio of height over shadow for each :

12/8 = 4/x

Cross multiply:

12x = 32

Divide both sides by 12:

X = 2 2/3 feet

The shadow is 2 2/3 feet.

PLEASE ASAP HELP!!! ​

Answers

The correct answer is D

One kilogram is approximately 2.2 pounds. Write a direct variation equation that relates x kilograms to y pounds.

Answers

Answer:

2.2y=1x or just x

Step-by-step explanation:

Answer: y=2.2x

Step-by-step explanation:

Assume that the prevalence of breast cancer is 13%. The
diagnostic test has a sensitivity of 86.9% and a
specificity of 88.9%. If a patient gets a positive result
What is the probability that the patient has breast cancer?

Answers

The probability that the patient has breast cancer given a positive result is 62.2%.

The probability of testing positive given the patient has breast cancer is:

P(P|C) = 0.869

The specificity of the test is 88.9% or 0.889, meaning that the test will correctly identify 88.9% of patients who do not have breast cancer as not having the disease.

So, the probability of testing negative given the patient does not have breast cancer is:

P(N|N) = 0.889

Now, using Bayes' theorem:

P(C|P) = P(P|C) * P(C) / P(P)

where,P(P) = P(P|C) * P(C) + P(P|N) * P(N)

Here, P(P|N) is the probability of testing positive given that the patient does not have breast cancer. This is equal to 1 - specificity = 1 - 0.889 = 0.111.

So, P(P) = P(P|C) * P(C) + P(P|N) * P(N) = 0.869 * 0.13 + 0.111 * (1 - 0.13) = 0.1823

So,P(C|P) = 0.869 * 0.13 / 0.1823 = 0.622 or 62.2%

Learn more about probability at:

https://brainly.com/question/30841158

#SPJ11

What is the measure of angle C?

Answers

Answer:

angle C = 36°

Step-by-step explanation:

Fun fact that I found out:

all interior angles of a triangle added together = 180°

5x + 3x + 2x = 180°

combine like terms:

10x = 180°

divide both sides of the equation by 10:

x = 18°

angle C = 2(18°) = 36°

Other Questions
1The diagram below represents a food chain in a garden.RoseGreenflyLadybirdBlackbirdA food chain in a garden1.1Name the organism above that represents the following:(a) Herbivore(b) Producer(1)(1)1.2A rose bush contains 1 000 kJ/m2 /year of energy and only 10% of thisenergy is passed on at each trophic level of the food chain. How muchenergy will be passed on to the blackbird? Show ALL your calculations.(4)1.3If all the greenflies in this garden were removed, explain what wouldhappen to the populations of the following:(a) Rose plants(b) Ladybirds(C) Blackbirds(2)(2)(2)(12) What is the slope and y intercept of 4x + 2y = 6?NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! NO FILES!!!! 4/5 divided by 2/7 in simplest form Four partners (Adams, Benson, Cagle, and Duncan) jointly own a piece of land with a market value of $400,000. Suppose that the land is subdivided into four parcels S1, S2, S3, and 54. The partners are planning to split up, with each partner getting one of the four parcels. Complete parts (a) through (e). (a) To Adams, sy is worth $40,000 more than S3, S3 and S1 are equal in value, and S4 is worth $20,000 more than S2. Determine which of the four parcels are fair shares to Adams. ....................... Solve the system of equations using the substitution method.x-4-52x + 3y - 23Write your solution as an ordered pair:( Consider a firm running a business in the pure competition setting. This firm's cost function is as follows c(y) c(y) = y - 4y + question are consistent with the notations used in class. What is the short-run supply function for this cost structure? (3f3)^2 pls help aaaaaaaaaaaaaaaaaaaa write a statement that displays the variable as: there are 10 friends. Code that is provided:var numFriends= 10; // Code tested with values: 10 and 33/* Your solution goes here */ What is the quotient of (x^3 + 3x^2 - 4x - 12) divided by (x^2 + 5x + 6) I don't know how to do this, I wasn't paying attention in class from coldest to hottest in order what is it?i. hII regionsii. neutral hydrogen cloudsiii. ultra-hot insterstellar gas what do i do if i accidentally clicked a retake on a quiz that i just made a 90 on? Using the following list, enter a sentence from one section of "Head Games" that corresponds to the appropriate categories. For example, identify the topic sentence from the section titled Taking a Hit and enter the sentence next to the Claim category. Be sure that each section of the article (there are seven sections) is represented in at least one category.Read "Head Games." The following triangles are similar. Solve for x: If a company's assets increase, which of the following is possible? a. Expenses increase b. Liabilities decrease c. Revenues decrease d. Stockholders' Equity increases First, circle the ending and underline the stem of the verb. Then, write the correct pronoun to agree with eachverb.1.tengo cuatro clases cada da. Solve the initial value problem. dy dx Ex4(y 2), y(0) = 6 For this data set, the best measure of center is the , and its value is If individuals from box 1 and box 4 were crossed, what would be the genotypes of theoffspring?F. all BbG. Bb and bbH. BB and bbI. BB and Bb