m²+5mn+5n²
To factor the above, we need two factors of 5n², such the sum gives 5n and the product gives 5n²
No such factors exists, hence the polynomial is prime.
Use four rectangles to estimate the area between the graph of the function f(x) = V3x + 5 and the x-axis on the interval[0, 4] using the left endpoints of the subintervals as the sample points. Round any intermediate calculations, if needed, to noless than six decimal places, and round your final answer to three decimal places.
Answer:
12.123
Step-by-step explanation:
You want the area under the curve f(x) = √(3x+5) on the interval [0, 4] estimated using the left sum and four subintervals.
Riemann sumWhen the interval [0, 4] is divided into four equal parts, each has unit width. That means the area of the rectangle defined by the curve and the interval width will be equal to the value of the curve at the left end of the interval.
The area we want is the sum ...
f(0) +f(1) +f(2) +f(3)
As the attachment shows, that sum is ...
area ≈ 12.123 . . . square units
__
Additional comment
The table values in the attachment are rounded to 7 decimal places. Trailing zeros are not shown. Actual values used have 12 significant digits, as the total shows.
Such a sum is called a Riemann sum, named for a German mathematician. Four such sums are commonly used, and further refinements are possible. Those are the left sum (as here), the right sum, the midpoint sum, and a sum using a trapezoidal approximation of the rectangle area.
For left, right, and midpoint sums, n function values are required for n subintervals. When the trapezoidal approximation is used, n+1 function values are required.
Complete the vertical algorithm to evaluate the product.Please see image below
Solution
Complete the vertical algorithm to evaluate the product:
Therefore the product of the expression is
[tex]4.09656[/tex]David has a coin collection. He keeps 9 of the coins in his box, which is 2% of the collection. How many total coins are in his collection?
Work Shown:
x = total number of coins
2% of x = 0.02x = 9 coins in the box
0.02x = 9
x = 9/0.02
x = 450 coins total
Question Solve for d. d³ = 27
Answer:
d = 3
Step-by-step explanation:
I took different numbers, like 1 and 2, and multiplied them to themselves 3 times, for example, 2 x 2 x 2, but since that answer was wrong, I decided to try a different number, which was 3 and that was correct.
which situation can be represented by this inequality1.25x -6.50 > 50 A. Caleb has a balance of 6.50$ in his savings account and deposits 1.25$ each week. What is X the number of weeks must deposit 1.25$ in order to have a balance of more than 50$ in his savings account?B. Caleb earns 1.25% interest on the balance in his checking account and has to pay a monthly charge of 6.50$. What is X the balance that Caleb must have in his checking account in order to have an ending balance greater than 50$ after interest and fees.C. Caleb charges 1.25$ for gasoline plus 6.50$ per hour for mowing lawns. What is X the number of hours he has to mow lawns to earn more than 50$D. Caleb spends 6.50$ on supplies for a lemonade stand and sells each cup of lemonade for 1.25$. what is X the number of cups of lemonade Caleb must sell to earn profit of more than 50$
We need to find a situation that can be represented by the inequality below:
[tex]1.25\cdot x-6.5>50[/tex]This means that there must be a variable for which each unit has a value of 1.25. There must be a fixed cost of 6.5, because we are subtracting that value and the end goal must be to have more than 50.
The only option for which this applies is the option D.
Caleb spent a fixed amount of 6.5, he earns 1.25 for each lemonade he sells and he wants to have a profit of more than 50.
What is the area of the shaded triangle?The area of the shaded triangle is in. 2
The area of the shaded triangle is equal to:
[tex]A=\frac{1}{2}bh[/tex]the base of the shaded triangle is 4 in and the height is 5 in, then:
[tex]\begin{gathered} A=\frac{1}{2}(4)(5) \\ =\frac{1}{2}\cdot20 \\ =10 \end{gathered}[/tex]Therefore the shaded area is 10 squared inches.
Need help please with this
Answer: It would be Answer D
Step-by-step explanation: He Subtracted from both sides in an incorrect order
1/2 ^1/2 please show the steps
The value of [tex](\frac{1}{2} )^{\frac{1}{2} }[/tex] is 0.707.
1÷2 = 0.5
Given, [tex](\frac{1}{2} )^{\frac{1}{2} }[/tex]
Could be written like, [tex](0.5)^{0.5}[/tex] or √(1 ÷ 2) or √(0.5)
So the value of √(0.5) is 0.707.
Another way is to factorize each integer as the product of its primes using the square root prime factorization method. Follow these methods to find the square root of a certain number using prime factorization:
Step 1: Divide the supplied integer by its decimal equivalent.
Step 2: If the connected components are identical, a pair is generated.
Step 3: Choose one of the pair members for her.
Step 4: Multiply the prime numbers you got by picking one from each pair.
Step 5: This product is the square root of the specified number.
Learn more about factorization at
https://brainly.com/question/2515494?referrer=searchResults
#SPJ1
27 is The same as the product of four and a number
Answer:
6.75
Step-by-step explanation:
6.75x4 = 27 so if this is what was meant by this then heres your answer
hope this helped
have a good day ^^
Calculate the distance between the points L=(1, -8) and C=(9, -3) in the coordinate plane.
Round your answer to the nearest hundredth.
kintett. 41
Distance:
[tex]~~~~~~~~~~~~\textit{distance between 2 points} \\\\ L(\stackrel{x_1}{1}~,~\stackrel{y_1}{-8})\qquad C(\stackrel{x_2}{9}~,~\stackrel{y_2}{-3})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ LC=\sqrt{(~~9 - 1~~)^2 + (~~-3 - (-8)~~)^2} \implies LC=\sqrt{(9 -1)^2 + (-3 +8)^2} \\\\\\ LC=\sqrt{( 8 )^2 + ( 5 )^2} \implies LC=\sqrt{ 64 + 25 } \implies LC=\sqrt{ 89 }\implies LC\approx 9.43[/tex]
Write two numbers that multiply to the value on top and add to the value on bottom.
The values are -3 and -26
What is Multiplication?
A product is an expression that identifies the object to be multiplied, called the result of a multiplication, or coefficient. For example, 30 is the product of 6 and 5, and x\cdot is the product of x.
We have to find the number which is multiply to give the upper value and sum up to give the bottom value
So, the value of these numbers will be
-3 x -23 = 69
-3 + (-23) = -26
Hence the values are -3 and -23
To learn more about Multiplication click on the link
https://brainly.com/question/10873737
#SPJ13
1) Consider the ratio table below that compare hours worked to money earned for an employee at a pizza restaurant. Hours Worked 4 12 16 ? Money Earned 36 ? 76 108 144 270 a. How much money would an employee earn for working 8 hours? b. How many hours did a person work if they earned $270? c. Find the ratio associated with the table above (in simplest form). d. If you extend the ratio table, how much money will be earned if an employee works 24 hours? dollars they can amount of time
The ratio table can be used to find the amount earned and the number of hours worked based on the ratio of the values as follows;
a. A person that works for 8 hours earns $72
b. A person that earns $270 worked for 30 hours
c. The ratio is 9 : 1
d. The earnings of a person that works for 24 hours is $216
What is a ratio table?A ratio table is one that shows the constant relationship between the value pairs on the table.
The given ratio table is presented as follows;
Hours Worked; 4, 12, 16, ?
Money Earned; 36, 108, 144,
Required;
a. The amount a person will earn if he or she works for 8 hours
Solution;
Let x represent the hours worked, and let y represent the money earned
y = k•x
Therefore;
k = y/x
From the ratio table, we have;
k = 36/4 = 108/12 = 144/16 = 9
k = 9
y = 9•x
The amount earned, y for working 8 hours, x is therefore;
y = 9 × 8 = 72
The amount earned for working 8 hours is $72
b. The number of hours worked if a person earns $270
If a person earned $270, we have;
270 = 9 × x
x = 270/9 = 30
The number of hours worked if a person earned $270 is 30 hours
c. The ratio associated with the table in the simplest form is 36 : 4 = 9 : 1
d. The amount earned if a person worked 24 hours
Solution;
y = 9•x
Which gives;
y = 9 × 24 = 216
The amount earned if a person worked 24 hours is $216
Learn more about ratio tables here:
https://brainly.com/question/2571177
#SPJ1
I really need help with number 5
Given:
Required:
To find the distance from point B to line AC.
Explanation:
The point B touches the line AC at P.
And it is perpendicular.
The length of BP is 4.3.
Therefore, the distance from point B to line AC is 4.3.
Final Answer:
The distance from point B to line AC is 4.3.
Solve this inequality
[tex]\boxed{ \large\displaystyle\text{$\begin{gathered}\sf \bf{-8\leq 10-2x < 28 } \end{gathered}$} }[/tex]
Separate the inequality compound in the inequality system.
[tex]\boxed{\large\displaystyle\text{$\begin{gathered}\sf \bf{{\left\{ \begin{array}{r}10-2x\geq -8 \\ 10-2x < 28 \ \end{array} \right.} } \end{gathered}$} }[/tex]
We solve to: 10 - 2x < 28Order the unknown terms to the left side of the equation.[tex]\boxed{\bf{-2x < 28-10 }}[/tex]
Calculate the sum or difference.
[tex]\boxed{\bf{-2x < 18 }}[/tex]
Divide both sides of the equation by the coefficient of the invariable.[tex]\boxed{\bf{x > -\frac{18}{2} }}[/tex]
Clear the common factor
[tex]\boxed{\bf{x > -9} }}[/tex]
We solve to: 10 - 2x ≥ -8Order the unknown terms to the left side of the equation.
[tex]\boxed{\bf{-2x\geq -8-10 }}[/tex]
Calculate the sum or difference.
[tex]\boxed{\bf{-2x\geq -18 }}[/tex]
Divide both sides of the equation by the coefficient of the invariable.
[tex]\boxed{\bf{x\leq \frac{-18}{-2} }}[/tex]
Determine the sign of multiplication and division.
[tex]\boxed{\bf{x\leq \frac{18}{2} }}[/tex]
Clear the common factor
[tex]\boxed{\bf{x\leq 9}}[/tex]
[tex]\boxed{ \large\displaystyle\text{$\begin{gathered}\sf \bf{x > -9 \ and \ x\leq 9 } \end{gathered}$} }[/tex]
We find the intersection.
Answer = [tex]\boxed{ \large\displaystyle\text{$\begin{gathered}\sf \bf{-9 < x\leq 9 } \end{gathered}$} }[/tex]
Alternative forms: x ∈ (-9, 9]Can Some one please help me match the congruence statements below!
Divide using synthetic division. Write down the answer as a polynomial.x^3-5x^2-2x+24=0; (x+2)
we are given the following polynomial:
[tex]x^3-5x^2-2x+24=0[/tex]we are asked to use synthetic division by:
[tex]x+2[/tex]first we need to find the root of "x + 2":
[tex]\begin{gathered} x+2=0 \\ x=-2 \end{gathered}[/tex]Now we do the synthetic division using the following array:
[tex]\begin{bmatrix}{1} & {-5} & {-2} \\ {\square} & {\square} & {\square} \\ {\square} & {\square} & {\square}\end{bmatrix}\begin{bmatrix}{24} & {} & {} \\ {\square} & {} & {} \\ {\square} & {} & {}\end{bmatrix}\begin{cases}-2 \\ \square \\ \square\end{cases}[/tex]Now we lower the first coefficient and multiply it by -2 and add that to the second coefficient:
[tex]\begin{bmatrix}{1} & {-5} & {-2} \\ {\square} & {-2} & {\square} \\ {1} & {-7} & {\square}\end{bmatrix}\begin{bmatrix}{24} & {} & {} \\ {\square} & {} & {} \\ {\square} & {} & {}\end{bmatrix}\begin{cases}-2 \\ \square \\ \square\end{cases}[/tex]Now we repeat the previous step. We multiply -7 by -2 and add that to the next coefficient:
[tex]\begin{bmatrix}{1} & {-5} & {-2} \\ {\square} & {-2} & {14} \\ {1} & {-7} & {12}\end{bmatrix}\begin{bmatrix}{24} & {} & {} \\ {\square} & {} & {} \\ {\square} & {} & {}\end{bmatrix}\begin{cases}-2 \\ \square \\ \square\end{cases}[/tex]Now we repeat the previous step. we multiply 12 by -2 and add that to the next coefficient:
[tex]\begin{bmatrix}{1} & {-5} & {-2} \\ {\square} & {-2} & {14} \\ {1} & {-7} & {12}\end{bmatrix}\begin{bmatrix}{24} & {} & {} \\ {-24} & {} & {} \\ {0} & {} & {}\end{bmatrix}\begin{cases}-2 \\ \square \\ \square\end{cases}[/tex]The last number we got is the residue of the division, in this case, it is 0. Now we rewrite the polynomial but we subtract 1 to the order of the polynomial:
[tex]\frac{x^3-5x^2-2x+24}{x+2}=x^2-7x+12[/tex]A and B are sets of real numbers defined as follows.A = {x|x≤ 2}XB = {x|x < 7}Write A UB and An B using interval notation.If the set is empty, write 0.
The given sets are
[tex]\begin{gathered} A=\lbrace x:x,x\leq2\rbrace \\ \\ B=\lbrace x:x,x<7\rbrace \end{gathered}[/tex]That means A is all real numbers from 2 to negative infinity, and B is all real numbers between 7 and positive infinity
[tex]\begin{gathered} A=(-\infty,2] \\ \\ B=(7,\infty) \end{gathered}[/tex]Then we can find the union and intersection
[tex]\begin{gathered} A\cup B=(-\infty,2]\cup(7,\infty) \\ OR \\ A\cup B=(-\infty,\infty)-(2,7] \end{gathered}[/tex]I will draw a sketch to show you the intersection
We can see that there is NO intersection between A and B, then
[tex]\begin{gathered} A\cap B=\lbrace\rbrace \\ A\cap B=0 \end{gathered}[/tex]Converting between fractions, decimals, and percentsUse the definition of the word percent to write each percent as a fraction and then as a decimal.
Answer:
See below for the completed table
Explanation:
A percentage is a number or ratio written as a fraction of 100. It is usually denoted using the symbol %.
To convert from percentage to fraction, divide the percentage by 100.
[tex]25\%=\frac{25}{100}[/tex]You can then convert the fraction to a decimal where:
[tex]\frac{25}{100}=0.25\text{ (In decimal form)}[/tex]Using the method described above, we calculate for the other values on the table:
[tex]\begin{gathered} 50\%=\frac{50}{100}=0.5 \\ 100\%=\frac{100}{100}=1 \\ 1\%=\frac{1}{100}=0.01 \\ 37.5\%=\frac{37.5}{100}=0.375 \\ 110\%=\frac{110}{100}=1.1 \\ \frac{1}{2}\%=\frac{0.5}{100}=0.005 \end{gathered}[/tex]The completed table is attached below.
The measure of two complementary angles are in ratio 2:3. What is the measure of the smaller angle
ANSWER
36°
EXPLANATION
Let a and b be the measures of the two angles. We know that they are complementary, so their measures add up to 90°. Also, we know that the quotient between their measures is 2/3,
[tex]\begin{gathered} a+b=90 \\ \frac{a}{b}=\frac{2}{3} \end{gathered}[/tex]Solve the second equation for a,
[tex]a=\frac{2}{3}b[/tex]Replace a with this expression in the first equation,
[tex]\frac{2}{3}b+b=90[/tex]Add like terms,
[tex]\frac{5}{3}b=90[/tex]Solving for b,
[tex]b=90\cdot\frac{3}{5}=54[/tex]So the other angle is,
[tex]a=\frac{2}{3}b=\frac{2}{3}\cdot54=36[/tex]Hence, the measure of the smaller angle is 36°.
The field inside a running track is made up of a rectangle 84.39 m long and 73 m wide, together with a half-circle at each end. The running lanes are 9.76 m Wide all the way around.What is the area of the running track that goes around the field? Round to the nearest square meter.
To find the area of the running track that goes around the field, we need to follow the formula:
area of running track = outside area - inside area
1. Outside Area:
outside area = area of rectangle + 2× area of the semi- circle
= 92.52× 84.39 + π × 46.26² = 14527.32m²
2. Inside Area:
inside area = area of rectangle + 2× area of the semi- circle
= 73 × 84.39 + π × 36.5² = 10343.74m²
So, area of running track = 14527.32 m² - 10343.74m² = 4183.58m² ≈ 4184m²
A population doubles every 27 years. Assuming exponential growth find the following:help find continuous growth rate (a) The annual growth rate: 2.6(b) The continuous growth rate is____% per year help (numbers)
Given,
A population doubles every 27 years.
a. Let initial population be 1 and after 27 years it becomes 2.
Considering r as the rate of annuall growth we have,
[tex]\begin{gathered} 1(1+r)^{27}=2 \\ \Rightarrow27\ln (1+r)=\ln 2 \\ \Rightarrow\ln (1+r_{})=\frac{0.693}{27} \\ \Rightarrow1+r=1.0257 \\ \Rightarrow r=0.026 \end{gathered}[/tex]Thus annual growth rate is 2.6%
b. For continuous growth,
[tex]\begin{gathered} 1(e^{27x})=2 \\ \Rightarrow27x=0.693 \\ \Rightarrow x=0.025 \end{gathered}[/tex]The continuous growth rate is _2.5___% per year
Bob's Golf Palace had a set of 10 golf clubs that were marked on sale for $840. This was a discount of 10% off the original selling price.Step 2 of 4: If the golf clubs cost Bob's Golf Palace $390, what was their profit? Follow the problem-solving process and round youranswer to the nearest cent, if necessary.
Consider that the Bob's Golf Palace bought the set of golf clubs by $390.
Moreover, take into account that the golf clubs were markes on sale for $840.
The profit is only the difference between the marked on sale and the money Bob's Golf Palace payed:
$840 - $390 = $450
Hence, the profit was $450
2(3x+6)-96=6(2x-4)-56Which value of x makes the equation true?A. X=-2B. x=-2/3C. x=2D. x=3
Given equation:
[tex]2(3x+6)-96=6(2x-4)-56[/tex]Solve the equation to find the value of x,
[tex]\begin{gathered} 2(3x+6)-96=6(2x-4)-56 \\ 2(3x)+2(6)-96=6(2x)-6(4)-56 \\ 6x+12-96=12x-24-56 \\ 6x-84=12x-80 \\ -84+80=12x-6x \\ -4=6x \\ x=\frac{-4}{6} \\ x=-\frac{2}{3} \end{gathered}[/tex]Hence, x=-2/3
Answer: option B) is correct
Answer:
2(3×+6) is 96 _6 by (2×4=5) with A.X
Given that Kelsey has already made 10 pendants how many additional pendants must she make and sell to make a profit of 50 dollars?
Part a: Kelsey should make 36 pendants
Part b: Kelsey needs to make 26 more pendants
Rent of the booth at the craft fair = $200
The material cost of each pendant = is $7.80
The selling cost of each pendant = is $13.50
Let Kelsey make x number of pendants
Formulating the inequality equation we get:
Selling cost of each pendant*Number of pendants >= Rent of the booth + Material cost of each pendant*Number of pendants
= 13.50x >= 200 + 7.80x
Solving the inequality we get:
13.50x >=200+7.80x
5.70x >= 200
x >= 35.08
So, she should make a total of 36 pendants
Considering that she has already made 10 pendants. She needs 26 more pendants.
Although a part of your question is missing, you might refer to this full question: Kelsey makes pendants that she would like to sell at an upcoming craft fair. She must pay $200 to rent a booth at the craft fair. The materials for each pendant cost $7.80, and she plans to sell each pendant for $13.50. To make a profit, she must make more money than she spends. Kelsey has already made 10 pendants. Part A: Write and solve an inequality to show how many pendants Kelsey should make. Show the steps of your solutions. Part B: Given that Kelsey has already made 10 pendants, how many additional pendants must she make and sell to make a profit?
Learn more about inequality:
https://brainly.com/question/20383699
#SPJ9
In order to earn extra money during the summer, Trevor is working as a house painter. The
amount of money he earns depends on the number of houses he paints.
m = the amount of money Trevor earns
h = the number of houses Trevor paints
Which of the variables is independent and which is dependent?
h is the independent variable and m is the
dependent variable
m is the independent variable and h is the
dependent variable
Submit
The correct answer to this question is that m is the dependent variable and h is the independent variable.
The amount of money Trevor earns can be formulated in the form of linear equation. A Linear equation is the one which can be expressed in the form of y = ax + b where y is dependent, and x is independent variable whereas a, b are coefficients. According to question amount of money Trevor earns will depend on the number of houses he paints. If m is the amount of money Trevor earns and h is the number of houses Trevor paints. This can be formulated as
m = hx + b and in this expression, m is dependent variable and h is independent variable as his earning will depend on the number of houses he paints.
Learn more about linear equation at:
brainly.com/question/28307569
#SPJ9
How many 1/4 pound hamburgers could be made from 5 1/2 pounds of hamburger meat?
Given:
Total amount of hamburger meat = 5½ pounds
Let's find how many ¼ pound hamburgers could be made from 5½ pounds of hamburger meat.
To find how many pound hamburger could be made divide 5½ by ¼.
Thus, we have:
[tex]5\frac{1}{2}\div\frac{1}{4}[/tex]To perform the division, take the following steps:
Step 1:
Convert the mixed fraction to improper fraction
[tex]\frac{11}{2}\div\frac{1}{4}[/tex]Step 2:
Flip the fraction on the right and change the division symbol to multiplication
[tex]\begin{gathered} \frac{11}{2}\ast\frac{4}{1} \\ \\ =\frac{11\ast4}{2\ast1} \\ \\ =\frac{44}{2} \\ \\ =22 \end{gathered}[/tex]Therefore, 22 of ¼ pound of hamburger could be made from 5½ pounds of hamburger meat.
ANSWER:
22
Can you please help? I think it is ODD. Do you agree?
Given,
The function is:
[tex]f(x)=x+\frac{12}{x}[/tex]Taking x = -x then,
[tex]\begin{gathered} f(-x)=-x+\frac{12}{-x} \\ =-x-\frac{12}{x} \\ =-(x+\frac{12}{x}) \\ =-f(x) \end{gathered}[/tex]The function is odd.
Premises:
If I'm a student, then I go to school. If I go to school, then I learn.
Conclusion:
If I'm a student, then I learn.
This is an example of the Law of
?
Answer:
it's wh question I think
A flower garden is shaped like a circle. Its diameter is . A ring-shaped path goes around the garden. The width of the path is .The gardener is going to cover the path with sand. If one bag of sand can cover , how many bags of sand does the gardener need? Note that sand comes only by the bag, so the number of bags must be a whole number. (Use the value for .)
The number sand bags required are 84 approximately.
Given, we have:
Diameter of garden = 38 yd
Width of path = 5 yd
Diameter of garden with path = 38 + 2 x 5 = 48 yd
We need to find area of path.
Area of path = Area of garden with path - area of garden
Area of path = π × 48²/4 - π × 38²/4
Area of path = 7234.56/4 - 4534.16/4
Area of path = 1808.64 - 1133.54
Area of path = 675.1 yd²
Area covered by one sand bag = 8 yd²
Number of sand bags required = Area of path/Area covered by one sand bag
=675.1/8
= 84.38 ≈ 84
Number of sand bags needed = 84
Therefore, number of sand bags required are 84.
Learn more about Circles here:
brainly.com/question/25871159
#SPJ9
From a group of 6 people, you randomly select 5 of them.
What is the probability that they are the 5 oldest people in the group?
Give your answer as a fraction
The probability that they are the 5 oldest people in the group is 1/6.
Given that we have a group of 6 people, and we randomly select 5 of them.
We need to find the probability that they are the 5 oldest people in the group.
The total number of ways to select 5 people from a group of 6 people is given by 6C5 which is equal to 6.
This means that there are only 6 possible outcomes when we randomly select 5 people from a group of 6 people.
We know that the 5 oldest people in the group can be selected only in one way.
So, the number of favorable outcomes is 1.
Hence, the probability of selecting the 5 oldest people from the group when 5 people are randomly selected is: Probability = favorable outcomes/total outcomes Probability = 1/6
Therefore, the probability that they are the 5 oldest people in the group is 1/6.
For more questions on probability
https://brainly.com/question/25839839
#SPJ8