Answer:
Ions.
Explanation:
Ions are the free moving, charged particles in a molten mixture of aluminum oxide and cryolite because the liquid state loosely held the molecules and the the molecules can easily move from one place to another. These ions helps in the conduction of electricity in the solution due to its free movement so we can say that ions are the charge particles that moves freely in the mixture of aluminum oxide and cryolite.
The free moving, charged particles in a molten mixture of aluminium oxide
and cryolite are known as Ions.
Ions are referred to an atom or compound which possesses an electrical
charge.The charge could be positive or negative and the positive ions are
called cations while the negative ions are referred to an anions.
Ions are usually free moving, take part in chemical reactions and help to
conduct electricity as a result of them being transferred from one point to
another.
Read more on https://brainly.com/question/7222067
Intramolecular forces of attraction are important in holding large molecules together.
a. True
b. False
Answer:
False. Intermolecular forces of attraction are important in holding large molecules together.
Explanation:
Within a molecule, atoms are held together by intramolecular forces. That is, intramolecular forces are the attractive forces that hold the atoms or ions that make up chemical substances (elements and compounds) together, forming a chemical bond.
On the other hand, intermolecular forces are those that act on different molecules or ions and that make them attract or repel each other. In other words, intermolecular forces are those that occur between the different molecules of a compound, and cause these molecules or ions to attract or repel each other.
So, intermolecular forces of attraction are important in holding large molecules together.
This is a quiz not a question from cambridge!
What is 2NaOH + Cl2→NaCl + NaOCl + H2O???
Answer::::
As products sodium chloride, sodium chlorate(I) and water are given. Hot concentrated Chlorine reacts with hot and concentrated sodium hydroxide solution to form sodium chloride and sodium chlorate.
Answer:
the answer is it's a balance chemical equation.
Explanation:
hope this helps u!!
The Kc for the following is 5.0 at 100 degrees Celsius.
If an equilibrium mixture contains 0.53 M NO2 what is the molar concentration of N2O4?
Answer:
1.40M = [N2O4]
Explanation:
Based on the reaction:
2NO2(g) ⇄ N2O4(g)
Kc is defined as:
Kc = 5.0 = [N2O4] / [NO2]²
Where [] are the concentrations in equilibrium of each gas
As the equilibrium concentration of NO2 is 0.53M:
5.0 = [N2O4] / [0.53]²
5.0 = [N2O4] / [0.2809]
5.0*0.2809 = [N2O4]
1.40M = [N2O4]6. What happens to energy during the formation of a solution?
It is released or absorbed.
It is only absorbed.
It is only released
It is nelther released nor absorbed.
Answer:
it is released and absorbed:)
You want to test how the mass of a reactant affect the speed of a reaction which of the following is an example of a controlled experiment to test this
Answer:A
Explanation:
Choose the atom that has the largest atomic radius.
a. Cl
b. S
c. Na
d. Si
Answer:
the correct answer is option C. Na
Star
Planet
*
As the planet makes one completer revolution around the star, starting at the position shown the gravitational attraction between the star
and the planet will
A Continually decrease
3 Decrease, then increase
increase then decrease
Romain the same
RI
12.20 AM
618/2001
Answer:
according to the path shown in the figure it will start decreasing then again it will start increasing when the path will be nearer to the star.
Reason is gravitation force is indirectly proportional to the distance.
So, option B. decrease then increase is correct
2) Gay-Lussac's law shows a direct relationship between temperature and
O moles
pressure
O volume
O density
Answer:
The correct option is (b) "pressure".
Explanation:
Gay-Lussac's law states that the pressure of an ideal gas is directly proportional to its temperature at constant mass and volume.
Mathematically, Gay-Lussac's law is as follows :
[tex]P=kT[/tex]
or
[tex]\dfrac{P_1}{T_1}=\dfrac{P_2}{T_2}[/tex]
Hence, the correct option is (b) "pressure".
Identify each of the following as endothermic or exothermic.
a. Water in a pond evaporates.
b. Methane gas burns on a stove top.
c. Water freezes to form ice.
d. Energy flows from the system to the surroundings.
e. Energy flows from the surroundings to the system.
Answer:
Identify each of the following as endothermic or exothermic.
a. Water in a pond evaporates.
b. Methane gas burns on a stovetop.
c. Water freezes to form ice.
d. Energy flows from the system to the surroundings.
e. Energy flows from the surroundings to the system.
Explanation:
An exothermic reaction is the one in which heat energy is released.
An endothermic reaction is one in which heat energy is absorbed.
a. Water in a pond evaporates.
This process absorbs heat energy.
Hence, this is an example of an endothermic process.
b. Methane gas burns on a stovetop and release heat energy and hence this is an example of an exothermic reaction.
c. Water freezes to form ice.
In this process heat energy is released.So this is an example of exothermic reaction.
d. Energy flows from the system to the surroundings.
That means heat energy is released into the surroundings.
So, this is an example of exothermic process.
e. Energy flows from the surroundings to the system.
That means energy is absorbed by the system.
So, it is an endothermic process.
A 200. gram sample of a salt solution contains 0.050 grams of NaCl. What is the concentration of the
solution in parts per million (ppm)?
Answer:
2.5 × 10² ppm
Explanation:
Step 1: Given data
Mass of NaCl: 0.050 gMass of the sample: 200. gStep 2: Convert 0.050 g to μg
We will use the conversion factor 1 g = 10⁶ μg.
0.050 g × 10⁶ μg/1 g = 5.0 × 10⁴ μg
Step 3: Calculate the concentration of NaCl in ppm
The concentration of NaCl in ppm is equal to the micrograms of NaCl per gram of the sample.
5.0 × 10⁴ μg NaCl/200. g = 2.5 × 10² ppm
Answer:250 ppm
Explanation:
The chemical equation of the reaction between Hydrogen and Oxygen is given below
H2 + O2 → H2O
(a) Write down the reactants and product of this reaction
(b) This chemical equation is not balanced . Why?
(c) Balance the given equation
9. Consider the given unbalanced reaction
Na + O2 → Na2O
(a) Find out the mono atomic and diatomic molecules in this equation
(b) What is the chemical compound present in this equation
(c) Balance the given equation
Answer:
1. a. The reactants are H₂ and O₂; The product is H₂O
b. The equation is not balanced because the number of atoms of the elements reacting is not equal to the number of atoms produced. 2 atoms of oxygen reacted but only one atom of oxygen is produced.
c. 2 H₂ + O₂ ---> 2 H₂O
2. a. The monotonic molecule is the sodium molecule, Na, since itnis made up of only one atom in its molecule.
The diatomic molecule is oxygen molecule, O₂, since it is made up of two atoms in its molecule.
b. The chemical compound present is sodium oxide, Na₂O
c. 4 Na + O₂ ---> 2 Na₂O
Explanation:
In a chemical reaction, the reactants are the elements or compounds which are converted to a new substance whichnis known as the product. The products are the new substances formed from the reactants.
In the given equation of reaction below;
H₂ + O₂ ---> H₂O
a. The reactants are H₂ and O₂; The product is H₂O
b. The equation is not balanced because the number of atoms of the elements reacting is not equal to the number of atoms produced. 2 atoms of oxygen reacted but only one atom of oxygen is produced.
c. 2 H₂ + O₂ ---> 2 H₂O
2. Given the reaction equation below:
Na + O₂ ---> Na₂O
a. The monotonic molecule is the sodium molecule, Na, since it is made up of only one atom in its molecule.
The diatomic molecule is oxygen molecule, O₂, since it is made up of two atoms in its molecule.
b. The chemical compound present is sodium oxide, Na₂O since itconsists of two chemically combined elements, sodium and oxygen.
c. 4 Na + O₂ ---> 2 Na₂O
as the temperature of a chemical in this gas phase is increased, the rate of the reaction increases because
Answer:
An increase in temperature typically increases the rate of reaction. An increase in temperature will raise the average kinetic energy of the reactant molecules. Therefore, a greater proportion of molecules will have the minimum energy necessary for an effective collision
what is the [H+] and [OH-] of a 3.5 M HCIO3 solution?
Answer: H+ ia helyuim
explinanation: Hope this helped!!
For the balanced chemical reaction
>
C4H2OH + 602 > 4CO2 + 5H20
if you want to make 100 molecules of CO2, how many molecules of O2 will you need? Answer with a number only.
ITS
Answer:
150
Explanation:
C₄H₂OH + 6O2 → 4CO2 + 5H₂OWe can find the equivalent number of O₂ molecules for 100 molecules of CO₂ using a conversion factor containing the stoichiometric coefficients of the balanced reaction, as follows:
100 molecules CO₂ * [tex]\frac{6moleculesO_2}{4moleculesCO_2}[/tex] = 150 molecules O₂150 molecules of O₂ would produce 100 molecules of CO₂.
20. What is an irreversible change?
Answer:
A change is called irreversible if it cannot be changed back again. For example you cannot change a cake back into its ingredients again. Irreversible changes are permanent.
Explanation:
Hope this helps!! :))
At a constant temperature of 30 °C, an ideal gas occupies 2.78 Liters at a pressure of 1.27 atm. What will be the volume (L) at a pressure of 3.95 atm?
Answer:
[tex]V_2=0.894L[/tex]
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to solve this problem by using the Boyle's law for an inversely proportional relationship between pressure and volume at constant temperature, as described in the problem statement:
[tex]P_2V_2=P_1V_1[/tex]
Thus, we solve for V2, final volume, to obtain the following result:
[tex]V_2=\frac{P_1V_1}{P_2} \\\\V_2=\frac{1.27atm*2.78L}{3.95atm}\\\\V_2=0.894L[/tex]
Regards!
g .For each of the following disubstituted cyclohexanes, indicate whether the substituents in the two chair conformations would be both equatorial in one chair conformer and both axial in the other, or one equatorial and one axial in each of the two chair conformers. (a) Cis-1,2- (b) Trans-1,2- (c) Cis-1,3- (d) Trans-1,3- (e) Cis-1,4- (f) Trans-1,4-
Answer:
a) Both chairs conformers have one of its substituents in an axial position and the other in an equatorial position
b) One chair conformer has both its substituents in an axial position while the other chair has its substituents in an equatorial position
c) One chair conformer has both its substituents in an axial position while the other chair has its substituents in an equatorial position
d) Both chairs have one of its substituents in an axial position and the other in an equatorial position
e) Both chairs have one of its substituents in an axial position and the other in an equatorial position
(f) One chair conformer has both its substituents in an axial position while the other chair has its substituents in an equatorial position
Explanation:
Determine what the substituents would be
a) Cis-1,2- : Both chairs conformers have one of its substituents in an axial position and the other in an equatorial position
b) Trans-1,2- : One chair conformer has both its substituents in an axial position while the other chair has its substituents in an equatorial position
c) Cis-1,3- : One chair conformer has both its substituents in an axial position while the other chair has its substituents in an equatorial position
d) Trans-1,3- : Both chairs have one of its substituents in an axial position and the other in an equatorial position
e) Cis-1,4- : Both chairs have one of its substituents in an axial position and the other in an equatorial position
(f) Trans-1,4- : One chair conformer has both its substituents in an axial position while the other chair has its substituents in an equatorial position
When the following aqueous solutions are mixed together, a precipitate forms. Balance the net ionic equation in standard form for the reaction that occurs and determine the sum of the coefficients.
Sodium sulfide and silver nitrate - 3 or 4
Lead(II) nitrate and sodium chloride -3 or 4
Calcium nitrate and potassium carbonate - 3or 4
Barium nitrate and sodium hydroxide -3 or 4
Silver nitrate and sodium chloride -3 or 4
Answer:
For (a): The balanced net ionic equation is [tex]2Ag^{+}(aq)+S^{2-}(aq)\rightarrow Ag_2S(s)[/tex] and the sum of coefficients is 4
For (b): The balanced net ionic equation is [tex]Pb^{2+}(aq)+2Cl^{-}(aq)\rightarrow PbCl_2(s)[/tex] and the sum of coefficients is 4
For (c): The balanced net ionic equation is [tex]Ca^{2+}(aq)+CO_3^{2-}(aq)\rightarrow CaCO_3(s)[/tex] and the sum of coefficients is
For (d): The balanced net ionic equation is [tex]Ba^{2+}(aq)+2OH^{-}(aq)\rightarrow Ba(OH)_2(s)[/tex] and the sum of coefficients is 4
For (e): The balanced net ionic equation is [tex]Ag^{+}(aq)+Cl^{-}(aq)\rightarrow AgCl(s)[/tex] and the sum of coefficients is 3
Explanation:
Net ionic equation is defined as the equations in which spectator ions are not included.
Spectator ions are the ones that are present equally on the reactant and product sides. They do not participate in the reaction.
For (a): Sodium sulfide and silver nitrateThe balanced molecular equation is:
[tex]Na_2S(aq)+2AgNO_3(aq)\rightarrow 2NaNO_3(aq)+Ag_2S(s)[/tex]
The complete ionic equation follows:
[tex]2Na^{+}(aq)+S^{2-}(aq)+2Ag^+(aq)+2NO_3^{-}(aq)\rightarrow 2Na^+(aq)+2NO_3^-(aq)+Ag_2S(s)[/tex]
As sodium and nitrate ions are present on both sides of the reaction. Thus, they are considered spectator ions.
The net ionic equation follows:
[tex]2Ag^{+}(aq)+S^{2-}(aq)\rightarrow Ag_2S(s)[/tex]
Sum of the coefficients = [2 + 1 + 1] = 4
For (b): Lead(II) nitrate and sodium chlorideThe balanced molecular equation is:
[tex]2NaCl(aq)+Pb(NO_3)_2(aq)\rightarrow 2NaNO_3(aq)+PbCl_2(s)[/tex]
The complete ionic equation follows:
[tex]2Na^{+}(aq)+2Cl^{-}(aq)+Pb^{2+}(aq)+2NO_3^{-}(aq)\rightarrow 2Na^+(aq)+2NO_3^-(aq)+PbCl_2(s)[/tex]
As sodium and nitrate ions are present on both sides of the reaction. Thus, they are considered spectator ions.
The net ionic equation follows:
[tex]Pb^{2+}(aq)+2Cl^{-}(aq)\rightarrow PbCl_2(s)[/tex]
Sum of the coefficients = [2 + 1 + 1] = 4
For (c): Calcium nitrate and potassium carbonateThe balanced molecular equation is:
[tex]K_2CO_3(aq)+Ca(NO_3)_2(aq)\rightarrow 2KNO_3(aq)+CaCO_3(s)[/tex]
The complete ionic equation follows:
[tex]2K^{+}(aq)+CO_3^{2-}(aq)+Ca^{2+}(aq)+2NO_3^{-}(aq)\rightarrow 2K^+(aq)+2NO_3^-(aq)+CaCO_3(s)[/tex]
As potassium and nitrate ions are present on both sides of the reaction. Thus, they are considered spectator ions.
The net ionic equation follows:
[tex]Ca^{2+}(aq)+CO_3^{2-}(aq)\rightarrow CaCO_3(s)[/tex]
Sum of the coefficients = [1 + 1 + 1] = 3
For (d): Barium nitrate and sodium hydroxideThe balanced molecular equation is:
[tex]2NaOH(aq)+Ba(NO_3)_2(aq)\rightarrow 2NaNO_3(aq)+Ba(OH)_2(s)[/tex]
The complete ionic equation follows:
[tex]2Na^{+}(aq)+2OH^{-}(aq)+Ba^{2+}(aq)+2NO_3^{-}(aq)\rightarrow 2Na^+(aq)+2NO_3^-(aq)+Ba(OH)_2(s)[/tex]
As sodium and nitrate ions are present on both sides of the reaction. Thus, they are considered spectator ions
The net ionic equation follows:
[tex]Ba^{2+}(aq)+2OH^{-}(aq)\rightarrow Ba(OH)_2(s)[/tex]
Sum of the coefficients = [2 + 1 + 1] = 4
For (e): Silver nitrate and sodium chlorideThe balanced molecular equation is:
[tex]NaCl(aq)+AgNO_3(aq)\rightarrow NaNO_3(aq)+AgCl(s)[/tex]
The complete ionic equation follows:
[tex]Na^{+}(aq)+Cl^{-}(aq)+Ag^{+}(aq)+NO_3^{-}(aq)\rightarrow Na^+(aq)+NO_3^-(aq)+AgCl(s)[/tex]
As sodium and nitrate ions are present on both sides of the reaction. Thus, they are considered spectator ions.
The net ionic equation follows:
[tex]Ag^{+}(aq)+Cl^{-}(aq)\rightarrow AgCl(s)[/tex]
Sum of the coefficients = [1 + 1 + 1] = 3
Determine the number of significant digits in each number and list the specific significant digits. 1. 306,000 2. 0.0073 3. 39.9999 4. 25.00 5. 40,000,021 6. 45,250.0 7. 0.00011 8. 420.030700
Answer:
1. 306,000: three significant figures because the last three zeros are not preceded by a decimal point.
2. 0.0073: two significant figures because the the leftmost zeros are not significant.
3. 39.9999: six significant figures because all these numbers are nonzero digits.
4. 25.00: four significant figures because right-handed zeros, after a decimal point, are significant.
5. 40,000,021: eight significant figures because intermediate zeros are significant.
6. 45,250.0: six significant figures because al the zeros are to the right of the nonzero digits.
7. 0.00011: two significant figures as well as #2.
8. 420.030700: nine significant figures because all the zeros are to the right of the first nonzero digits and after the decimal point.
Explanation:
Hello there!
In this case, by considering the given numbers, we can proceed as follows, by keeping in mind the rules for assigning significant figures:
1. 306,000: three significant figures because the last three zeros are not preceded by a decimal point.
2. 0.0073: two significant figures because the the leftmost zeros are not significant.
3. 39.9999: six significant figures because all these numbers are nonzero digits.
4. 25.00: four significant figures because right-handed zeros, after a decimal point, are significant.
5. 40,000,021: eight significant figures because intermediate zeros are significant.
6. 45,250.0: six significant figures because al the zeros are to the right of the nonzero digits.
7. 0.00011: two significant figures as well as #2.
8. 420.030700: nine significant figures because all the zeros are to the right of the first nonzero digits and after the decimal point.
Regards!
HELP PLZ!!! 37. Which of the following most accurately describes what the pH scale measures?
the strength of a compound.
the strength of a base
th oncentration of acids and bases.
O
the concentration of an acid
What is the mass of Na2CO3 required to make a
500 mL standard solution of 0.400 mol/L Na2CO3?
a. 212 g
b. 23.4 g
c. 25.8 g
d. 27.39
Answer:
21.2 g
Explanation:
Step 1: Given data
Molar concentration of the solution (C): 0.400 mol/LVolume of solution (V): 500 mL (0.500 L)Step 2: Calculate the moles of Na₂CO₃ (solute) in the solution
We will use the definition of molarity.
C = moles of solute / liters of solution
moles of solute = C × liters of solution
moles of solute = 0.400 mol/L × 0.500 L = 0.200 mol
Step 3: Calculate the mass corresponding to 0.200 moles of Na₂CO₃
The molar mass of Na₂CO₃ is 105.99 g/mol.
0.200 mol × 105.99 g/mol = 21.2 g
what can a wave be described as
Answer:
wavy, a feel of water, smooth and costy
Explanation:
What is a successful outcome for using a scientific method?
develop a theory. develop a hypothesis. support a hypothesis
After being exposed to fire ant venom, crazy ants that were treated with formic acid has a significantly greater survival rate than those treated with a water-based control. In this experiment, these results suggested that:___________
Answer:
After being exposed to fire ant venom, crazy ants that were treated with formic acid has a significantly greater survival rate than those treated with a water-based control. In this experiment, these results suggested that:
Explanation:
That means formic acid increases its rate of survival.
So, formic acid acts in both ways as offensive and defensive ways to crazy ants.
What is the name of this compound?
Answer:
THERE IS NOTHING MENTION HERE HOW CAN ANYONE KNOW ABOUT IT?]
Explanation:
How many moles of KCl are in
28g of KCl?
Answer:
0.38 moles KCl
Explanation:
(28 g KCl) / (74.55 g/mol KCl) = 0.38 moles KCl
Answer:
There are 0.38 moles of KCI in
28g of KCI.
Explanation:
This maybe correct.
Classify each phrase according to whether it applies to photophosphorylation, oxidative phosphorylation, or both
Photophosphorylation Oxidative phosphorylation Both
1. occurs in plants produces ATP
2. occurs in chloroplasts
3. occurs in mitochondria
4. involves a larger electrical component
5. involves a smaller electrical component
6. involves a proton gradient
Answer:
1. Both
2. Phosphorylation
3. Both
4. Phosphorylation
5. Oxidative.
6. Both
Explanation:
Phosphorylation only occurs in chloroplast and it involves larger electrical component. Both Phosphorylation and oxidative occurs in mitochondria and it involves proton gradient. They occur in plants to produce ATP. Oxidative involves in smaller electrical component.
Photophosphorylation is a process that captures the solar energy from the sun to transform it into chemical energy. It occurs in the chloroplast of a plant cell.
What are photophosphorylation and oxidative phosphorylation?Photophosphorylation is a process of converting solar energy from the sun to ATP needed by plants and other organisms for cellular function and activity. This process takes place in the chloroplast of the plant cell and requires electrical components.
Oxidative Phosphorylation is the process of producing ATP with the help of oxygen and enzymes hence, occurs in aerobic cells. It does not need a larger electrical component.
Both phosphorylation and oxidative phosphorylation occurs in the mitochondria of plants cells and involves a proton gradient for the formation of ATP.
Therefore, oxidative phosphorylation option 5. involves a smaller electrical component, phosphorylation option 2. occurs in the chloroplast, and option 4. needs a larger electrical component.
Learn more about phosphorylation here:
https://brainly.com/question/1870229
Question:
What is the molar concentration of 1.29 mol of KCL dissolved in 350 mL of solution?
Answer:
M = 3.69 M.
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to calculate the molar concentration of the 1.29 moles of KCl in 350 mL of solution by recalling the mathematical definition of molarity as the division of the moles by the volume in liters, in this case 0.350 L; thus, we proceed as follows:
[tex]M=\frac{1.29mol}{0.350L}\\\\M=3.69M[/tex]
Which gives molar units, M, or just mol/L.
Regards!
Arrange the following molecules in order of decreasing polarity of their bonds.
a. PBr3
b. SF2
c. H2O
d. NCl3
Answer:
SF2 > H2O > PBr3 > NCl3
Explanation:
Compare the electronegativity values for the atoms and classify the nature of the bonding based on the electronegativity difference.
P has an electronegativity of 2.1, while Br has an electronegativity of 2.96. The difference is 0.86, indicating that these atoms will form covalent bonds.
S has an electronegativity of 2.58 while F has an electronegativity of 4.0. The difference is 1.42, indicating that these atoms will form polar covalent bonds.
O has an electronegativity of 3.5 while H has an electronegativity of 2.1. The difference is 1.4, indicating that these atoms will form polar covalent bonds.
N has an electronegativity of 3.04, whereas Cl has an electronegativity of 3.5. This difference of 0.46 indicates that these atoms will form covalent bonds.
We know that the greater the electronegativity, the higher the polarity. In decreasing order of polarity, we have:
SF2 > H2O > PBr3 > NCl3
What’s the answer to the question
Answer: B
Explanation: im pretty sure my teacher mentioned something about N--h bonds are non polar
Answer:
C
Explanation: