Answer:
35.8g of Cl₂ is the yield
Explanation:
Based on the reaction:
MnO₂ + 4HCl → MnCl₂ + 2H₂O + Cl₂
1 mole of MnO₂ and 4 moles of HCl react producing 1 mole of Cl₂
To solve this question we must find limiting reactant. with limiting reactant we can find the theoretical yield of Cl₂. As the actual yield is the 62.7% we can find actual yield of Cl₂ in grams:
Moles MnO₂ -Molar mass: 86.9368g/mol-:
70.0g * (1mol / 86.9368g) = 0.805 moles
Moles HCl -Molar mass: 36.46g/mol-:
128.0g * (1mol / 36.46g) = 3.51 moles
For a complete reaction of 3.51 moles of HCl are required:
3.51 moles HCl * (1mol MnO₂ / 4mol HCl) = 0.878 moles MnO₂.
As there are just 0.805 moles of MnO₂, MnO₂ is limiting reactant.
1 mole of MnO₂ produce 1 mole of Cl₂. The theoretical moles of Cl₂ produced are 0.805 moles.
As the yield is of 62.7%, the yield of Cl₂ is:
0.805 moles * (62.7 / 100) = 0.505 moles Cl₂. In grams:
0.505 moles Cl₂ * (70.906g / mol) =
35.8g of Cl₂ is the yieldHow many grams are in 3.5 moles of H2O?
Answer:
Hi
Explanation:
We assume you are converting between moles H2O and gram. You can view more details on each measurement unit: molecular weight of H2O or grams This compound is also known as Water or Dihydrogen Monoxide. The SI base unit for amount of substance is the mole. 1 mole is equal to 1 moles H2O, or 18.01528 grams.
1 mole is equal to 6.023 × 10 ²³ molecules. 63 grams are in 3.5 moles of H2O.
What do you mean by mole ?The term mole is defined as the amount of substance of a system which contains as many elementary entities.
One mole of any substance is equal to 6.023 × 10²³ units of that substance such as atoms, molecules, or ions. The number 6.023 × 10²³ is called as Avogadro's number or Avogadro's constant.
The mole concept can be used to convert between mass and number of particles.
We expect you are converting between moles H2O and gram. The molecular weight of H2O or gram's This compound is also known as Water or Dihydrogen Monoxide. The SI base unit for amount of substance is the mole. 1 mole is equal to 1 moles H2O, or 18.01528 grams.
Thus, 63 grams are in 3.5 moles of H2O.
To learn more about the mole, follow the link;
https://brainly.com/question/26416088
#SPJ2
An organic compound which has the empirical formula CHO has an approximate
molar mass of 145 g/mol. What is its probable molecular formula?
Answer:
Molecular formula => C₅H₅O₅
Explanation:
From the question given above, the following data were obtained:
Empirical formula = CHO
molar mass of compound = 145 g/mol
Molecular formula =?
The molecular formula of the compound can be obtained as follow:
Molecular formula = Empirical formula × n
Molecular formula = [CHO]ₙ
[CHO]ₙ = 145
[12 + 1 + 16]n = 145
29n = 145
Divide both side by 29
n = 145 / 29
n = 5
Molecular formula = [CHO]ₙ
Molecular formula = [CHO]₅
Molecular formula => C₅H₅O₅
Walking up a flight of stairs and noticing that it gets warmer as you climb
higher is an example of *
5 points
Conduction
Convection
Radiation
Brain damage
True or False. The scientific method is a rigid process?
The answer to your question is true
The statement "The scientific method is a rigid process" is false.
What is scientific method ?The method by which scientist search for solutions and answers to their problem and question with the help of procedure is called scientific method.
To learn more about scientific method here.
https://brainly.com/question/7508826
#SPJ3
A sample of chlorine gas has a volume of 0.30 L at 273 K and 1 atm pressure. What temperature (in ∘C) would be required to increase the volume to 1.0 L ?
Answer:
[tex]T_2=637\°C[/tex]
Explanation:
Hello there!
In this case, considering this problem as pressure constant, since the change is exhibited in temperature and volume only, it is possible for us to use the Charles' law as shown below:
[tex]\frac{V_2}{T_2}=\frac{V_1}{T_1}[/tex]
Thus, by solving for the final temperature, we obtain:
[tex]T_2=\frac{T_1V_2}{V_1}\\\\T_2=\frac{273K*1L}{0.30L}\\\\T_2=910K-273\\\\T_2=637\°C[/tex]
Best regards!
Which of the following combinations of quantum numbers is permissible?Question 23 options: n = 1, l = 2, ml = 0, ms = n = 4, l = 3, ml = 1, ms = n = 3, l = 3, ml = 1, ms = n = 2, l = 1, ml = –1, ms = 0 n = 4, l = 3, ml = 4, ms =
Answer: n= 4, , l= 3, [tex]m_l[/tex] = 1, permissible
Explanation:
Principle Quantum Numbers : It describes the size of the orbital and the energy level. It is represented by n. Where, n = 1,2,3,4....
Azimuthal Quantum Number : It describes the shape of the orbital. It is represented as 'l'. The value of l ranges from 0 to (n-1).For l = 0,1,2,3... the orbitals are s, p, d, f...
Magnetic Quantum Number : It describes the orientation of the orbitals. It is represented as [tex]m_l[/tex]. The value of this quantum number ranges from [tex](-l\text{ to }+l).[/tex]
Spin Quantum number : It describes the direction of electron spin. This is represented as [tex]m_s[/tex]. The value of this is [tex]+\frac{1}{2}[/tex] for upward spin and [tex]-\frac{1}{2}[/tex] for downward spin.
a) n=1 , l= 2, [tex]m_l[/tex] = 0, not permissible as l can not greater than n.
b) n= 4, , l= 3, [tex]m_l[/tex] = 1, permissible
c) n= 3, l= 3, [tex]m_l[/tex] = 1, not permissible as l can not equal than n.
d) n= 4 , l= 3, [tex]m_l[/tex] = 4, not permissible as [tex]m_l[/tex] can not greater than l.
A strong acid, such as hydrochloric acid cannot be poured down a sink because it will react and dissolve the metal in the pipes. Yet a strong base, commonly found in drain cleaner, can be poured down a sink. A strong acid can be neutralized with a strong base, creating a salty water solution. What will happen when 10.0 g of hydrochloric acid were mixed with 10.5 grams of calcium hydroxide?
Answer:
15.2 grams of calcium chloride are produced and HCl is the limiting reactant.
Explanation:
Hello there!
In this case, according to the described scenario, it is possible to realize that the reaction between hydrochloric acid and calcium hydroxide is:
[tex]2HCl+Ca(OH)_2\rightarrow CaCl_2+2H_2O[/tex]
Whereas there is a 2:1 mole ratio of the acid to the base. In such a way, with the given masses, we can compute how much calcium chloride product is produced due to the chemical reaction via stoichiometry:
[tex]m_{CaCl_2}^{by HCl}=10.0gHCl*\frac{1molHCl}{36.46gHCl}*\frac{1molCaCl_2}{2molHCl} *\frac{110.98gCaCl_2}{1molCaCl_2} =15.2gCaCl_2\\\\m_{CaCl_2}^{by Ca(OH)_2}=10.5gHCl*\frac{1molCa(OH)_2}{74.09gCa(OH)_2}*\frac{1molCaCl_2}{1molCa(OH)_2} *\frac{110.98gCaCl_2}{1molCaCl_2} =15.7gCaCl_2[/tex]
Whereas we infer that the correct amount is 15.2 g since HCl is the limiting reactant as it produces the fewest grams of the desired product. Consequently, the calcium hydroxide is the excess reactant here.
Regards!
Two elevators carry five passengers to the fifth floor. However, the elevators do not do the same work. Choose the best factor for
determining the amount of work the elevators did.
A.the speed of the elevator
B.the weight of the passengers
C.the number of buttons pressed
Will mark brainlist pls help!
Answer:
B the weight of the passengers
How many mL of 0.715 M HCl is required to neutralize 1.25 grams of sodium carbonate? (producing carbonic acid)
I really couldn't find the answer since molarity and volume for sodium carbonate are not given.
I will mark the correct answer with steps as best answer.
Answer:
34 mL
Explanation:
We'll begin by calculating the number of mole in 1.25 g of sodium carbonate, Na₂CO₃. This can be obtained as follow:
Mass of Na₂CO₃ = 1.25 g
Molar mass of Na₂CO₃ = (23×2) + 12 + (16×3)
= 46 + 12 + 48
= 106 g/mol
Mole of Na₂CO₃ =?
Mole = mass /molar mass
Mole of Na₂CO₃ = 1.25 / 106
Mole of Na₂CO₃ = 0.012 mole
Next, we shall determine the number of mole HCl needed to react with 0.012 mole of Na₂CO₃.
The equation for the reaction is given below:
Na₂CO₃ + 2HCl —> H₂CO₃ + 2NaCl
From the balanced equation above,
1 mole of Na₂CO₃ reacted with 2 moles of HCl.
Therefore, 0.012 mole of Na₂CO₃ will react with = 0.012 × 2 = 0.024 mole of HCl.
Next, we shall determine the volume of HCl required for the reaction. This is illustrated:
Mole of HCl = 0.024 mole
Molarity of HCl = 0.715 M
Volume of HCl =?
Molarity = mole /Volume
0.715 = 0.024 / volume of HCl
Cross multiply
0.715 × volume of HCl = 0.024
Divide both side by 0.715
Volume of HCl = 0.024 / 0.715
Volume of HCl = 0.034 L
Finally, we shall convert 0.034 L to mL
This can be obtained as follow:
1 L = 1000 mL
Therefore,
0.034 L = 0.034 L × 1000 mL / 1 L
0.034 L = 34 mL
Therefore, 34 mL of HCl is needed for the reaction.
The amount of HCl required for counterbalancing 1.25 g of Na2CO3(Sodium Carbonate) would be:
- [tex]34 ml[/tex]
Given that,
Mass of Na2CO3 [tex]= 1.25 g[/tex]
To find the Moles of Na2CO3, we will find the molar mass of Na2CO3,
Molar Mass of or Na2CO3 [tex]= 106 g/mol[/tex]
So,
Moles of Na2CO3 [tex]= mass /molar mass[/tex]
[tex]= 1.25/106[/tex]
[tex]= 0.012 mol[/tex]
To determine the quantity of HCl required to display the reaction with 0.012 mol of Na2CO3
[tex]Na_{2} CO_{2} + 2HCl[/tex] → [tex]H_{2}CO_{3} + 2NaCl[/tex]
While balancing the equation, we know that [tex]0.012[/tex] × [tex]2 = 0.024 mole of HCl[/tex] is necessary to process the reaction.
Now,
As we know,
HCl moles [tex]= 0.024[/tex]
Molarity of HCl [tex]= 0.715 M[/tex]
∵ Quantity of HCl required = Moles/Molarity
[tex]= 0.024 / 0.715[/tex]
[tex]= 0.034 l[/tex] [tex]or 34ml[/tex]
Thus, 34 ml is the correct answer.
Learn more about 'Molarity' here:
brainly.com/question/12127540
If the rate of decomposition of ammonia, NH3, at 1150 K is 2.10 x 10-6 mol/L/s, what is the
rate of production of nitrogen and hydrogen? Given 2NH3 3H2 + N2
Answer:
3.15 × 10⁻⁶ mol H₂/L.s
1.05 × 10⁻⁶ mol N₂/L.s
Explanation:
Step 1: Write the balanced equation
2 NH₃ ⇒ 3 H₂ + N₂
Step 2: Calculate the rate of production of H₂
The molar ratio of NH₃ to H₂ is 2:3. Given the rate of decomposition of NH₃ is 2.10 × 10⁻⁶ mol/L.s, the rate of production of H₂ is:
2.10 × 10⁻⁶ mol NH₃/L.s × 3 mol H₂/2 mol NH₃ = 3.15 × 10⁻⁶ mol H₂/L.s
Step 3: Calculate the rate of production of N₂
The molar ratio of NH₃ to N₂ is 2:1. Given the rate of decomposition of NH₃ is 2.10 × 10⁻⁶ mol/L.s, the rate of production of N₂ is:
2.10 × 10⁻⁶ mol NH₃/L.s × 1 mol N₂/2 mol NH₃ = 1.05 × 10⁻⁶ mol N₂/L.s
Step 1: When we Write the balanced equation
Then 2 NH₃ ⇒ 3 H₂ + N₂Step 2: Calculate the rate of production of H₂
After that, The molar ratio of NH₃ to H₂ is 2:3. Given the rate of decomposition of NH₃ is 2.10 × 10⁻⁶ mol/L.s, the rate of production of H₂ is:Now 2.10 × 10⁻⁶ mol NH₃/L.s × 3 mol H₂/2 mol NH₃ = 3.15 × 10⁻⁶ mol H₂/L.sStep 3: Calculate the rate of production of N₂
After that, The molar ratio of NH₃ to N₂ is 2:1. Given the rate of decomposition of NH₃ is 2.10 × 10⁻⁶ mol/L.s, the rate of production of N₂ is:Now 2.10 × 10⁻⁶ mol NH₃/L.s × 1 mol N₂/2 mol NH₃ = 1.05 × 10⁻⁶ mol N₂/L.sLearn more about:
https://brainly.com/question/16814930
Lipids include:
A. fats and water
B. Oils and carbohydrates
C. Waxes and sterols
Answer: C
waxes and sterols
Explanation:
edge 2021
Where are electrons found in an atom?
Answer:
outside the nucleus
Explanation:
The elemental composition of propane gas (C3H8) is 81.68% C and 18.32% H by mass. What is the maximum amount of C3H8 in grams that can be formed from 160.0 g C and 160.0 g H
Molar mass of C3H8 = C 3 (12.01 g/mol) = 36.03 (g/mol)
H 8 (1.008 g/mol) = 8.064 (g/mol)
44.09 (g/mol)
74.6 g propane x 1 mole propane x 6.022 x 10
23
molecules
44.09 g propane 1 mole propane
= 1.02 x 10
24 molecules propane
Explain what you think controls a material’s porosity
The primary porosity of a sediment or rock consists of the spaces between the grains that make up that material. The more tightly packed the grains are, the lower the porosity.
What is one way humans can preserve biodiversity
Answer:
Reducing the amount of water you use, by having a 5-minute shower or not running the water when washing up the dishes, can help protect vital wetlands. Plant scientists are also working to help conserve by developing crop varieties that use less water.
Explanation:
Answer:
1. Most of the endangered organisms may represent a source of income.
2. The conservation or preservation may conflict with morals.
3. The role of the species or organisms might not be understood.
Explanation:
Biodiversity simply means the amount or number of living organisms that exist in the world.
The practice of protecting these existing living organisms for specific known purposes is regarded as the preservation or conservation of biodiversity.
This process or practice of preserving biodiversity is important to meet most of the human needs, such as generating income, source of food and fuel among others.
A change in velocity can occur without a change in speed *
A: True
B: False?
Answer: True
Explanation: For example, changing direction can change velocity
It took 14.50 mL of 0.455M NaOH to fully neutralize 12.0mL of HCl. What is the concentration of the HCl?
HCl + NaOH \rightarrow→ NaCl + H2O
Answer:
0.550 M HCl
Explanation:
M1V1 = M2V2
M1 = 0.455 M NaOH
V1 = 14.50 mL NaOH
M2 = ?
V2 = 12.0 mL HCl
Solve for M2 --> M2 = M1V1/V2
M2 = (0.455 M)(14.50 mL) / (12.0 mL) = 0.550 M HCl
Answer:
The appropriate answer is "0.549 M".
Explanation:
The given values are:
N₁ = 14.50 mL
V₁ = 0.455 M
N₂ = 12 mL
Let
V₂ = C = ?
As we know,
⇒ [tex]N_1\times V_1=N_2\times V_2[/tex]
On substituting the values, we get
⇒ [tex]14.50\times 0.455 = 12\times C[/tex]
⇒ [tex]6.5975=12\times C[/tex]
⇒ [tex]C=\frac{6.5975}{12}[/tex]
⇒ [tex]=0.549 \ M[/tex]
Mixtures that would be considered buffers include which of the following? I. 0.10 M HCl + 0.10 M NaCl II. 0.10 M HF + 0.10 M NaF III. 0.10 M HBr + 0.10 M NaBr
Answer:
II. 0.10 M HF + 0.10 M NaF.
Explanation:
A buffer system may be formed in one of two ways:
A weak acid and its conjugate base.A weak base and its conjugate acid.Which of the following mixtures could be considered a buffer?
I. 0.10 M HCl + 0.10 M NaCl. No, because HCl is a strong acid.
II. 0.10 M HF + 0.10 M NaF. Yes, since HF is a weak acid and F⁻ (coming from NaF) is its conjugate base.
III. 0.10 M HBr + 0.10 M NaBr. No, because HBr is a strong acid.
Atoms in the same PERIOD have the same...
A. Number of energy levels
B. Size
C. Temperature
D. Reactivity
Answer:
A. Number of energy levels
Which best describes the law of conservation of mass? 0 The coefficients in front of the chemicals in the reactants should be based on the physical state of the products. O Products in the form of gases are not considered a part of the total mass change from reactants to products. O When reactants contain both a solid and a liquid, the solid counts toward the overall mass and the liquid does not. O The mass of the reactants and products is equal and is not dependent on the physical state of the substances.
Explanation:
pdrias darme la traduccion no te entiendo
The domain Archaea are unicellular prokaryotes and can be autotrophs or heterotrophs
true or false?
Answer:
I think its true I dont really know
Explanation:
true
A solution contains 1.817 mg of CoSO4 (155.0 grams/mole) per mL. Calculate the volume (in mL) of 0.009795 M Zn2 needed to titrate the excess complexing reagent after the addition of 70.00 mL of 0.009005 M EDTA to a 20.00 mL aliquot of the Co2 solution.
Answer:
85.952 ml [tex]Zn^2^+[/tex] needed to titrate the excess complexing reagent .
Explanation:
Lets calculate
After addition of 80 ml of EDTA the solution becomes = 20 + 70 = 90 ml
As the number of moles of [tex]CoSO_4[/tex] =[tex]\frac{Given mass }{molar mass}[/tex]
=[tex]\frac{1.817}{155}[/tex]
=0.01172
Molarity = [tex]\frac{no. of moles}{volume of solution}[/tex]
=[tex]\frac{0.01172}{20}[/tex]
=0.000586 moles
Excess of EDTA = concentration of EDTA - concentration of CoSO4
= 0.009005 - 0.000586
= 0.008419 M
As M1V1 ( Excess of EDTA ) = M2V2 [tex](Zn^2^+)[/tex]
[tex]0.008419\times100ml=0.009795\times V2[/tex]
[tex]V2=\frac{0.008419\times100}{0.009795}[/tex]
V2 =85.952 ml
Therefore , 85.952 ml [tex]Zn^2^+[/tex] needed to titrate the excess complexing reagent .
Using current genetic engineering techniques can provide potential benefits for parents, including
A.
eliminating all genetic diseases from their child.
B.
conceiving a child who is a bone marrow match to a living child.
C.
cloning a parent to produce a child identical to the parent.
D.
producing only children with blonde hair.
Answer:
B. Conceiving a child who is a bone marrow match to a living child.
Explanation:
I don't know it just is.
A student in the lab accidentally poured 45 mL of water into a graduated cylinder containing 15 mL of 3.0 M HCL. What is the concentration of the new solution?
Answer:
The correct approach is "1 M".
Explanation:
The given values are:
Volume of HCL,
V₁ = 45 ml
In prepared solution,
V₂ = 15 ml
Concentration,
C₁ = ?
C₂ = 3.0 M
As we know,
⇒ [tex]V_1C_1=V_2C_2[/tex]
or,
⇒ [tex]C_1=\frac{V_2C_2}{V_1}[/tex]
On substituting the values, we get
⇒ [tex]=\frac{15\times 3}{45}[/tex]
⇒ [tex]=\frac{45}{45}[/tex]
⇒ [tex]=1 \ M[/tex]
If an equilibrium mixture of the three gases at 600K contains 2.92*10^-2 M COCH(g) and 1.76*10^2 M CO, what is the equilibrium
concentration of Cl2?
Answer:
C
Explanation:
What are the 5 properties of muscles
Data Collection
Mass of the original sample of mixture (g) 1.558
Mass of recovered naphthalene (g) 0.483
Mass of recovered 3-nitroaniline (g) 0.499
Mass of recovered benzoic acid (g) 0.467
Calculations:
a. % by mass of naphthalene in original sample.
b. % by mass of 3-nitroaniline in original sample.
c. % by mass of benzoic acid in original sample.
d. total percent recovered.
Answer:
For a): The mass percent of naphthalene in the original sample is 31.00 %.
For b): The mass percent of 3-nitroaniline in the original sample is 32.03 %.
For c): The mass percent of benzoic acid in the original sample is 29.97 %.
For d): The total percent recovered is 93.00 %.
Explanation:
Percentage by mass is defined as the ratio of the mass of a substance to the mass of the solution multiplied by 100. The formula used for this is:
[tex]\text{Percent by mass}=\frac{\text{Mass of substance}}{\text{Mass of a solution}} \times 100[/tex] ......(1)
a):
Mass of naphthalene = 0.483 g
Mass of the sample = 1.558 g
Plugging values in equation 1:
[tex]\%\text{ mass of naphthalene}=\frac{0.483 g}{1.558}\times 100\\\\\%\text{ mass of naphthalene}=31.00 \%[/tex]
b):
Mass of 3-nitroaniline = 0.499 g
Mass of the sample = 1.558 g
Plugging values in equation 1:
[tex]\%\text{ mass of 3-nitroaniline}=\frac{0.499 g}{1.558}\times 100\\\\\%\text{ mass of 3-nitroaniline}=32.03 \%[/tex]
c):
Mass of benzoic acid = 0.467 g
Mass of the sample = 1.558 g
Plugging values in equation 1:
[tex]\%\text{ mass of benzoic acid}=\frac{0.467 g}{1.558}\times 100\\\\\%\text{ mass of benozic acid}=29.97 \%[/tex]
d):
Total mass recovered = [0.483 + 0.499 + 0.467] = 1.449 g
Mass of the sample = 1.558 g
Plugging values in equation 1:
[tex]\text{Total percent recovered}=\frac{1.449 g}{1.558}\times 100\\\\\text{Total percent recovered}=93.00\%[/tex]
125.0 mL of 2.00 M NaCl solution is diluted to a concentration of 1.50 M. How many mL of water was added to the original volume? (Hint: must find V2 first) 1
166.7 ml
30.9 mL
41.7 ml
292 mL
(no links and please show work)
Answer:
Option A
Explanation:
As we know
C1V1 = C2V2
C1 = concentration of solution before dilution
V1 = Volume of solution before dilution
C2 = concentration of solution after dilution
V2 = Volume of solution after dilution
Substituting the given values in above equation, we get -
125 mL * 2.00 M = X mL * 1.50 M
X mL = 125 mL * 2.00 M / 1.50 M
X = 167 mL
Hence, option A is correct
Nitrous oxide (N2O), more commonly known as laughing gas, is used as a mild sedatitive during various dental procedures.As a gas, it has a densityof 1.977 x 10-3g/mL.Wheniron is exposed to oxygen it forms rust (Fe2O3), which is a solid and has a density value of 5.25 g/mL.Why are the density values so different among these substances?
a)The metal atoms weigh more than the atoms of the gas.
b)The metal forms metallic bonds which are more greatly affected by gravity, increasing the mass.
c)The metal is a solid, and solids weigh more based on the principles of their states of matter.
d)There are fewer gas particles than solid particles in the same volume.
Answer:
B.
Explanation:
The metal forms metallic bonds which are more greatly affected by gravity, increasing the mass.
A neutron is a negatively-charged particle in the atom. true or false
Answer: true
Explanation: