Answer:
C. Spring Tides is the answer.
A uniform plank 4 m long is pivoted about its center to an angle of 30° with the vertical. What magnitude of force
must be applied 0.5 m from the pivot to maintain equilibrium with a 4 kg mass hanging from one end?
A. 80 N
B. 20 N
C. 40 N
D. 60 N
E. 100 N
Answer:
A. 80 N
Explanation:
Since the uniform plank is pivoted at its center at an angle of 30 to the vertical, then it is 90° - 30° = 60° to the horizontal.
Let L be the length of the plank = 4 m, the perpendicular distance of the 4 kg mass form the pivot point is Lcos60°/2. Then the moment of the 4 kg mass about its pivot point is mgLcos60/2 where m = mass = 4 kg and g = acceleration due to gravity = 10 m/s²
Let F be the force applied at 0.5 m from the pivot point. The perpendicular distance of F from the pivot point is 0.5cos60°. Thus the moment of this force about the pivot point is F × 0.5cos60° = 0.5Fcos60°
Since both moments are the same for equilibrium,
mgLcos60/2 = 0.5Fcos60°
F = mgL/(2 × 0.5 m)
F = 4 kg × 10 m/s² × 4 m/1 m
F = 80 kgm/s²
F = 80 N
why we need system of measurement
Answer:
Without the ability to measure, it would be difficult for scientists to conduct experiments or form theories. Not only is measurement important in science and the chemical industry, it is also essential in farming, engineering, construction, manufacturing, commerce, and numerous other occupations and activities.
Explanation:
How much energy is required to move an electron through a potential difference of
12 V?
1) 1.9 x 10^- 18 )
2) 7.5 x 10^- 18 )
3) 1.3 x 10^-20)
4) 7.5 x 10^18 J
8× +5+9×+3 how can I solve this
Answer:
collect like terms then add=>8x+9x+5+3
=>8x+9x+5+3=>17x+8
which one of the following is not a derived quantity a)speed b)velocity c)time d)force
Answer:
c) time
Explanation:
time is a fundamental quantity from which other quantities are derived
Transformar las siguientes unidades al Sistema Internacional: 30 km/h ; 37 Dm ; 750 g ; 4x10-6 km2 ; 7500 cm ; 600000 cm2 ; 520700000 mm3 ; 3,4 años.
Answer:
a) 3.0 10⁴ m / s, b) 3.7 10¹ m, c) 0.750 kg, d) 4 10¹² m², e) 75 m, f) 60 m²
g) 5.207 10³ m², e) 4.847 10⁷ s
Explanation:
The international system (SI) of measurements has as fundamental units the meter for length, the second for time and kilogram for mass.
Let's reduce the different magnitudes to the SI system
a) 30 km / h (1000m / 1 km) (1 h / 3600 s) = 3.0 10⁴ m / s
b) 37 Dm (10 m / 1 Dm) = 3.7 10¹ m
c) 750 g (1 kg / 10,000 g) = 0.750 kg
d) 4 10⁶ km² (1000 m / 1km) ² = 4 10¹² m²
e) 7500 cm (1 m / 100 cm) = 75 m
f) 600000 cm² (1m / 10² cm) ² = 60 m²
g) 520700000 mm³ (1 m / 10³ mm) ³ = 5.20700000 109/10 ^ 6
= 5.207 10³ m²
e) 3.4 years (l65 days / 1 yr) (24 h / 1 day) (3600 s / 1h) = 4.847 10⁷ s
the answer is b :)
Samples of different materials, A and B, have the same mass, but the sample
of A is higher in density. Which statement could explain why this is so?
A. The particles that make up material B are more closely packed
together than the particles that make up material A.
B. The particles that make up material A have more mass than the
particles that make up material B.
C. The sample of material A has greater volume than the sample of
material B.
D. The particles that make up material B have more mass than the
particles that make up material A.
Answer:
Answer is letter B
Answer: THE CORRECT ANSWER IS : The partiles that make up material B are more closely packed together than the partiles that make up material A
Explanation: I TOOK THE TEST apex
3. How do energy transformations, energy transfers, and conservation of energy allows you to track how energy moves through in a system?
Answer:
The law of conservation of energy states that when one form of energy is transformed to another, no energy is destroyed in the process. According to the law of conservation of energy, energy cannot be created or destroyed. So the total amount of energy is the same before and after any transformation
Explanation:
The energy in a system always transforms from one form to another without any significant loss or addition. It simply changes from one form to another with the effect of numerous external influences.
What is Energy transformation?Energy transformation may be defined as the process through which energy can convert from one form to another. It also illustrates the migration of energy from one place to another due to physical factors.
According to the law of conservation of energy, in a closed system energy can neither be created nor destroyed. The total amount of energy remains the same before and after the process of transformation.
Therefore, the energy in a system always transforms from one form to another without any significant loss or addition.
To learn more about Energy transformations, refer to the link:
https://brainly.com/question/16917873
#SPJ2
A powerful motorcycle can produce an acceleration of 3.00 m/s2 while traveling at 106.0 km/h. At that speed, the forces resisting motion, including friction and air resistance, total 432.0 N. (Air resistance is analogous to air friction. It always opposes the motion of an object.) What is the magnitude of the force that motorcycle exerts backward on the ground to produce its acceleration if the mass of the motorcycle with rider is 241 kg
Answer:
"1155 N" is the appropriate solution.
Explanation:
Given:
Acceleration,
[tex]a=3 \ m/s^2[/tex]
Forces resisting motion,
[tex]F_f=432 \ N[/tex]
Mass,
[tex]m = 241 \ kg[/tex]
By using Newton's second law, we get
⇒ [tex]F-F_f=ma[/tex]
Or,
⇒ [tex]F=ma+F_f[/tex]
By putting the values, we get
⇒ [tex]=(3\times 241)+432[/tex]
⇒ [tex]=723+432[/tex]
⇒ [tex]=1155 \ N[/tex]
I WILL MARK YOU THE BRAINLIEST LINKS WILL BE REPORTED
put the correct words with the correct pictures
how much energy must be absorbed by 20.0 g of water to change its temperature from 95 degrees celsius to 125 degrees celsius
Answer:
I got 2508 J
Explanation:
q=mct
125-95
= 30 * 4.18 * 20
= 2508
What happens to the mass number of an atom when the
number of neutrons in the nucleus of that atom increases?
A blow-dryer and a vacuum cleaner each operate with a voltage of 120 V. The current rating of the blow-dryer is 14 A, while that of the vacuum cleaner is 4.2 A. Determine the power consumed by (a) the blow-dryer and (b) the vacuum cleaner. (c) Determine the ratio of the energy used by the blow-dryer in 16 minutes to the energy used by the vacuum cleaner in 43 minutes.
Answer:
The correct solution is:
(a) 1680 W
(b) 504 W
(c) 1.240
Explanation:
The given values are:
Voltage,
V = 120 V
Current of blow dryer,
I₁ = 14 A
Current of vacuum cleaner,
I₂ = 4.2 A
Time,
t₁ = 16 min
t₂ = 43 min
As we know,
⇒ [tex]Power (P) = VI[/tex]
(a)
For blow dryer:
⇒ [tex]P_1=V\times I_1[/tex]
[tex]=120\times 14[/tex]
[tex]=1680 \ W[/tex]
(b)
For Vacuum cleaner:
⇒ [tex]P_2=V\times I_2[/tex]
[tex]=120\times 4.2[/tex]
[tex]=504 \ W[/tex]
(c)
The ratio will be:
= [tex]\frac{Blow \ dryer \ energy}{Vacuum \ cleaner \ energy}[/tex]
= [tex]\frac{P_1\times t_1}{P_1\times t_2}[/tex]
= [tex]\frac{1680\times 16}{504\times 43}[/tex]
= [tex]\frac{26880}{21672}[/tex]
= [tex]1.240[/tex]
What happens to the wavelength of a wave if the frequency quadruples, but the wave is in the same medium?
A. The wavelength will go down to half the original amount.
B. The wavelength will go down to one-fourth of the original amount.
C. The wavelength will be quadruple.
D. The wavelength will double.
Answer:
I think C? I'm not sure totally though...
Explanation:
Weathering of rocks can occur in many ways. In the western United States, strong winds can erode huge rock formations by blowing millions of tiny grains of sand at these rocks. Which term accurately describes this type of weathering?
Answer: physical or mechanical weathering
Explanation:
Mechanical weathering which is also referred to as the physical weathering occurs when a rock is broken down into smaller pieces. In this case, there will be a physical change of the rock but its composition will not change.
Some examples include ice freezing and expansion of the cracks in the rock, Smstrong winds that carrycpieces of sand which then sandblast surfaces, moving water which causes abrasion etc.
The series circuit depicts three resistors connected to a voltage
source. The voltage source (AVtot) is a 110-V source and the resistor
values are 7.2 (R1), 6.2 A2 (R2) and 8.6 22 (R3).
b. Determine the current in the circuit.
A
c. Determine the voltage drops across each individual resistor.
Answer:
B. Current in the circuit is 5.
Ci. Voltage across 7.2 Ω (R₁) is 36 V
Cii. Voltage across 6.2 Ω (R₂) is 31 V
Ciii. Voltage across 8.6 Ω (R₃) is 43 V
Explanation:
We'll begin by calculating the number equivalent resistance in the circuit. This can be obtained as follow:
Resistor 1 (R₁) = 7.2 Ω
Resistor 2 (R₂) = 6.2 Ω
Resistor 3 (R₃) = 8.6 Ω
Equivalent Resistance (R) =?
Since the resistors are in series connection, the equivalent resistance can be obtained as follow:
R = R₁ + R₂ + R₃
R = 7.2 + 6.2 + 8.6
R = 22 Ω
B. Determination of the current.
Voltage (V) = 110 V
Resistance (R) = 22 Ω
Current (I) =?
V = IR
110 = I × 22
Divide both side by 22
I = 110 / 22
I = 5 A
Therefore, the current in the circuit is 5.
Ci. Determination of the voltage across 7.2 Ω (R₁)
Resistor 1 (R₁) = 7.2 Ω
Current (I) = 5 A
Voltage 1 (V₁) =?
V₁ = IR₁
V₁ = 5 × 7.2
V₁ = 36 V
Therefore, the voltage across 7.2 Ω (R₁) is 36 V
Bii. Determination of the voltage across 6.2 Ω (R₂)
Resistor 2 (R₂) = 6.2 Ω
Current (I) = 5 A
Voltage 2 (V₂) =?
V₂ = IR₂
V₂ = 5 × 6.2
V₂ = 31 V
Therefore, the voltage across 6.2 Ω (R₂) is 31 V
Ciii. Determination of the voltage across 8.6 Ω (R₃)
Resistor 3 (R₃) = 8.6 Ω
Current (I) = 5 A
Voltage 3 (V₃) =?
V₃ = IR₃
V₃ = 5 × 8.6
V₃ = 31 V
Therefore, the voltage across 8.6 Ω (R₃) is 43 V
A car initially at rest undergoes uniform acceleration for 6.32 seconds and covers a distance of 120 meters. What is the approximate acceleration of the car?
Answer:
Explanation:
The equation for acceleration is
[tex]a=\frac{v_f-v_0}{t}[/tex]. We have the initial velocity since we are told that the car started from rest. What we don't have is the final velocity. But we can find it because we were told that the car undergoes uniform acceleration, so the equation
d = rt will give us that final velocity.
120 = r(6.32) so the velocity or rate of the car is
r = 19 m/s. Plug that in to find the acceleration of the car:
[tex]a=\frac{19-0}{6.32}[/tex] so
a = 3.0 m/s/s
Explain why a kangaroo can jump higher as it's speed increases
Answer:
See explanation
Explanation:
The ability of the Kangaroo to jump higher is due to the stretching of its tendons as its speed increases.
As the tendons are being stretched more and more, the elastic potential energy increases with each increasing stretch.
This elastic potential energy is translated into gravitational potential energy hence the Kangaroo jumps higher as it's speed increases.
The kangaroo can jump higher as it's speed increases due to the ability of its tendons to stretch more and more.
The jumping of kangaroo can be related with the concept of spring force and spring potential energy. The spring force is given as,
F = kx
And spring elastic potential energy is,
[tex]U=\dfrac{1}{2}kx^{2}[/tex]
In both the cases, k is the spring constant and x is the stretching distance.
When kangaroo try to jump, the tendons provide extra flexibility to jump higher due to the more stretching. Here, the value of x increases. As value of x increases, ultimately more acceleration is provided to increase its speed.As the tendons are being stretched more and more, the elastic potential energy increases with each increasing stretch.
This elastic potential energy is translated into gravitational potential energy hence the Kangaroo jumps higher as it's speed increases.
Thus, we can conclude that the kangaroo can jump higher as it's speed increases due to the ability of its tendons to stretch more and more, such that more energy conversion of energy takes place.
Learn more about the elastic potential energy here:
https://brainly.com/question/25029446
what 3 words or 3 phrases that would help you remember the steps to Covalent and Ionic bonding?
Answer:
non metals and non metals=covalent bond
metals and non metals =ionic bond
transfer all the valence electron to form ionic bond
share valence electron to form covalent bond
Which is the preserved evidence of the activity of an organism?
Answer:
Fossils are the remains of an ancient organism or the traces of activity of such an organism. There are two types of fossils: body fossils and trace fossils. Body fossils include preserved remains of an organism (i.e. freezing, drying, petrification, permineralization, bacteria and algea).
A magnetic compass is placed near an insulated copper wire. When the wire is connected to a battery and a current is created, the compass needle moves and changes its position. Which is the best explanation for the production of a force that causes the needle to move?
Explanation:
When the wire is connected to a battery, the compass needle moves and changes its position. This happens because the needle magnetizes the copper wire, thus, creating a force.
While the current in the wire produces a magnetic field and exerts a force on the needle. The insulation on the wire becomes energized and exerts a force on the needle. Hence, the compass needle moves and changes its position.
A truck starts from rest with an acceleration of 0.3 m/ S^2 find its speed in km/h when it has moves through 150 m
Answer:
v = 34.128 km/hr
Explanation:
Given that,
The initial speed of a truck, u = 0
Acceleration of the truck, a = 0.3 m/s²
Distance moved, d = 150 m
Let the final speed of the truck is v. Using third equation of motion i.e.
[tex]v^2-u^2=2ad\\\\v=\sqrt{u^2+2ad}[/tex]
Put all the values,
[tex]v=\sqrt{0^2+2\times 0.3\times 150}\\\\v=9.48\ m/s[/tex]
or
v = 34.128 km/h
So, the final speed of the truck is equal to 34.128 km/h.
The ship was travelling 93 meters per second, 25 degrees above the x-axis Northeast. Determine the magnitude and direction of the horizontal vector component, Vx.
Answer: [tex]92.18\ m/s[/tex], east
Explanation:
Given
Ship is traveling at a speed of [tex]v=93\ m/s[/tex]
Direction of ship is [tex]25^{\circ}[/tex] North of east
If we break velocity vector in x and y axes then, the horizontal component is given by
[tex]\Rightarrow v_x=93\cos 25^{\circ}\\\Rightarrow v_x=92.18\ m/s[/tex]
The direction of horizontal component is towards east with magnitude of [tex]92.18\ m/s[/tex]
The magnetic field 0.100 m from a
wire is 4.20 x 10-5 T. What is the field
0.200 m from the wire (twice as far)?
[?] *10^[?]T
Answer:
Your answer is given below:
Explanation:
A charge Q creates an electric field. At a distance of 10 cm, the electric field strength
is 30 N/C. What is the electric field strength at a distance of 20 cm? NO LINKS.
1) 7.5 N/C
2) 15 N/C
3) 60 N/C
4) 120 N/C
Answer:
simltinoues divide two eqn El÷E2 Kq\ r^2\kq \2r^2 then you get it 7.5 N\c the answer is A
A 20 ohm and 60 ohm light bulb are put in series together which one would be brighter?
Answer:
The 60 Ohm bulb would be brighter than the 20 Ohm bulb.
Explanation:
Hi there!
Ohm's Law: [tex]V=IR[/tex] where V is voltage, I is current and R is resistance
Power equation: [tex]P=VR[/tex]
The greater the power of a bulb, the brighter it is.
The bulbs are connected in series, meaning the the current travelling through each will be the same. Plug Ohm's law into the power equation so we just have I and R:
[tex]P=I^2R[/tex]
Because the current stays the same, the bulb with greater resistance will have greater power, hence being brighter. Therefore, the 60 Ohm bulb would be brighter than the 20 Ohm bulb.
I hope this helps!
Answer:
The 60 Ohm bulb would be brighter than the 20 Ohm bulb.
Explanation:
Hi there!
Ohm's Law: V=IRV=IR where V is voltage, I is current and R is resistance
Power equation: P=VRP=VR
The greater the power of a bulb, the brighter it is.
The bulbs are connected in series, meaning the the current travelling through each will be the same. Plug Ohm's law into the power equation so we just have I and R:
P=2RP=I
2
R
Because the current stays the same, the bulb with greater resistance will have greater power, hence being brighter. Therefore, the 60 Ohm bulb would be brighter than the 20 Ohm bulb.
I hope this helps!
Which of the following statements are true about covalent bonding between two atoms? Select all that apply.
A. Electrons are shared.
B. The electronegativities of the two atoms are close to each other.
C. The two atoms can be of the same element.
D. Electrons transfer from one atom to the other.
Answer:
A and C
Explanation:
Covalent bonding involves sharing by the atoms involved
Statements that can be considered as true statement about covalent bonding between two atoms are:
A. Electrons are shared.
B. The electronegativities of the two atoms are close to each other.
C. The two atoms can be of the same element.
Covalent bond can be regarded as chemical bond in which electrons pairs are been shared between atoms, these atoms can be of the same element.These electron pairs are called pairs or bonding pairs.Therefore, option A,B,C are correct.
Learn more at
https://brainly.com/question/19382448?referrer=searchResults
For general projectile motion with no air resistance, the vertical component of a projectile's acceleration For general projectile motion with no air resistance, the vertical component of a projectile's acceleration remains a non-zero constant. continuously decreases. first decreases and then increases. is always zero. continuously increases.
Answer:
Rmains constant
Explanation:
The equation of the trajectory of a projectile motion is presented as follows;
[tex]Y = x \cdot tan \theta -\dfrac{g \cdot x^2}{2 \cdot u^2 \cdot cos^2 \theta}[/tex]
The vertical componet of the prjectile motion is
y = (u·sinθ)·t - g·t²/2
Where;
θ = The angle with which the projectile is launched
x = The horizontal distance
u = The initial velocity of the projectile
g = The acceleration due to gravity = Constant
t = The time of motion
The acceleration acting on the projectile is the 'g' which is the constant acceleration due to gravity
Therefore, for general projectile motion with no air resistance, the vertical component of the projectile acceleration remains constant
20 POINTS:
Why does the initial hill of a roller coaster need to be steep?
Answer: A roller coaster does not have an engine to generate energy. The climb up the first hill is accomplished by a lift or cable that pulls the train up. This builds up a supply of potential energy that will be used to go down the hill as the train is pulled by gravity
Hope this helps! Good luck with future homework and exams!
A children's roller coaster is released from the top of a track. If its maximum speed at ground level is 3 m/s, find the height it was released from.
Answer:
h = 0.46 m
Explanation:
According to the law of conservation of energy:
Potential Energy Lost by Roller Coaster = Kinetic Energy Gained by Roller Coaster
[tex]mgh = \frac{1}{2}mv^2\\\\2gh = v^2\\\\h = \frac{v^2}{2g}[/tex]
where,
h = height = ?
v = speed at bottom = 3 m/s
g = acceleration due to gravity = 9.81 m/s²
Therefore,
[tex]h = \frac{(3\ m/s)^2}{(2)(9.81\ m/s^2)}[/tex]
h = 0.46 m