The drone hovers for 29 seconds at a height of 53 meters above the ground while taking a picture of a crowd. What is the vertical impulse by the lift force (combined force of the four rotors) during this time (in Newton-seconds)?

Answers

Answer 1

This question is incomplete, the complete question is;

All of the questions for this quiz involve a drone with a mass of 1.2 kg.

The drone hovers for 29 seconds at a height of 53 meters above the ground while taking a picture of a crowd. What is the vertical impulse by the lift force (combined force of the four rotors) during this time (in Newton-seconds)?

Answer: the vertical impulse is 341.388 Ns

Explanation:

Given that;

mass m = 1.2 kg

t = 29 sec

h = 53 m

vertical impulse = ?

Vertical impulse by lift force is given as;

Vertical Impulse = F × t

= mg × t

so we substitute

Vertical impulse = 1.2 ×9.81 × 29

= 341.388 Ns

therefore the vertical impulse is 341.388 Ns


Related Questions

A gas stream contains 18.0 mole% hexane and the remainder nitrogen. The stream flows to a condenser, where its temperature is reduced and some of the hexane is liquefied. The hexane mole fraction in the gas stream leaving the condenser is 0.0500. Liquid hexane condensate is recovered at a rate of 1.50 L/min.

(a) What is the flow rate of the gas stream leaving the condenser in mol/min? (Hint : First calculate the molar flow rate of the condensate and note that the rates at which C6H14 and N2 enter the unit must equal the total rates at which they leave in the two exit streams.)

(b) What percentage of the hexane entering the condenser is recovered as a liquid?

Answers

Answer:

A. 72.34mol/min

B. 76.0%

Explanation:

A.

We start by converting to molar flow rate. Using density and molecular weight of hexane

= 1.59L/min x 0.659g/cm³ x 1000cm³/L x 1/86.17

= 988.5/86.17

= 11.47mol/min

n1 = n2+n3

n1 = n2 + 11.47mol/min

We have a balance on hexane

n1y1C6H14 = n2y2C6H14 + n3y3C6H14

n1(0.18) = n2(0.05) + 11.47(1.00)

To get n2

(n2+11.47mol/min)0.18 = n2(0.05) + 11.47mol/min(1.00)

0.18n2 + 2.0646 = 0.05n2 + 11.47mol/min

0.18n2-0.05n2 = 11.47-2.0646

= 0.13n2 = 9.4054

n2 = 9.4054/0.13

n2 = 72.34 mol/min

This value is the flow rate of gas that is leaving the system.

B.

n1 = n2 + 11.47mol/min

72.34mol/min + 11.47mol/min

= 83.81 mol/min

Amount of hexane entering condenser

0.18(83.81)

= 15.1 mol/min

Then the percentage condensed =

11.47/15.1

= 7.59

~7.6

7.6x100

= 76.0%

Therefore the answers are a.) 72.34mol/min b.) 76.0%

Please refer to the attachment .

Oil with a kinematic viscosity of 4 10 6 m2 /s fl ows through a smooth pipe 12 cm in diameter at 2.3 m/s. What velocity should water?

Answers

Answer:

Velocity of 5 cm diameter pipe is 1.38 m/s

Explanation:

Use following equation of Relation between the Reynolds numbers of both pipes

[tex]Re_{5}[/tex] = [tex]Re_{12}[/tex]

[tex]\sqrt{\frac{V_{5}XD_{5} }{v_{5}}}[/tex]= [tex]\sqrt{\frac{V_{12}XD_{12} }{v_{12}}}[/tex]

[tex]Re_{5}[/tex] = Reynold number of water pipe

[tex]Re_{12}[/tex] = Reynold number of oil pipe

[tex]V_{5}[/tex] = Velocity of water 5 diameter pipe = ?

[tex]V_{12}[/tex] = Velocity of oil 12 diameter pipe = 2.30

[tex]v_{5}[/tex] = Kinetic Viscosity of water = 1 x [tex]10^{-6}[/tex] [tex]m^{2}[/tex]/s

[tex]v_{12}[/tex] = Kinetic Viscosity of oil =  4 x [tex]10^{-6}[/tex] [tex]m^{2}[/tex]/s

[tex]D_{5}[/tex] = Diameter of pipe used for water = 0.05 m

[tex]D_{12}[/tex] = Diameter of pipe used for oil = 0.12 m

Use the formula

[tex]\sqrt{\frac{V_{5}XD_{5} }{v_{5}}}[/tex]= [tex]\sqrt{\frac{V_{12}XD_{12} }{v_{12}}}[/tex]

By Removing square rots on both sides

[tex]{\frac{V_{5}XD_{5} }{v_{5}}}[/tex]= [tex]{\frac{V_{12}XD_{12} }{v_{12}}}[/tex]

[tex]{V_{5}[/tex]= [tex]{\frac{V_{12}XD_{12} }{v_{12}XD_{5}\\}}[/tex]x[tex]v_{5}[/tex]

[tex]{V_{5}[/tex]= [ (0.23 x 0.12m ) / (4 x [tex]10^{-6}[/tex] [tex]m^{2}[/tex]/s) x 0.05 ] 1 x [tex]10^{-6}[/tex] [tex]m^{2}[/tex]/s

[tex]{V_{5}[/tex] = 1.38 m/s

How will the delay and active power per device change as you increase the doping density of both the N- and the P-MOSFET?

Answers

Answer:

hello your question is incomplete attached below is the missing part of the  question

Consider an inverter operating a power supply voltage VDD. Assume that matched condition for this inverter. Make the necessary assumptions to get to an answer for the following questions.

answer : Nd ∝ rt

Explanation:

Determine how the delay and active power per device will change as the doping density of N- and P-MOSFET increases

Pactive ( active power ) = Efs * F

Pactive = [tex]\frac{q^2Nd^2*Xn^2}{6Eo} * f[/tex]

also note that ; Pactive ∝ Nd2 (

tD = K . [tex]\frac{Vdd}{(Vdd - Vt )^2}[/tex]  since K = constant

Hence : Nd ∝ rt

A duck is cooked in the kitchen oven for 4 hours. Knowing that the oven, powered by 220 V, absorbs a current of 20 A and uses energy costing 0.048 € / kWh, how much does it cost to cook the duck?​

Answers

Explanation:

cooking of duck will cost 48000

by the help of the method of rate × A + €

Un mol de gas ideal realiza un trabajo de 3000 J sobre su entorno, cuando se expande de manera isotermica a una temperatura de 58°C, cuando su volumen inicial es de 25 L. Determinar el volumen final

Answers

Answer:

74,4 litros

Explanation:

Dado que

W = nRT ln (Vf / Vi)

W = 3000J

R = 8,314 JK-1mol-1

T = 58 + 273 = 331 K

Vf = desconocido

Vi = 25 L

W / nRT = ln (Vf / Vi)

W / nRT = 2.303 log (Vf / Vi)

W / nRT * 1 / 2.303 = log (Vf / Vi)

Vf / Vi = Antilog (W / nRT * 1 / 2.303)

Vf = Antilog (W / nRT * 1 / 2.303) * Vi

Vf = Antilog (3000/1 * 8,314 * 331 * 1 / 2,303) * 25

Vf = 74,4 litros

If it is desired to lay off a distance of 10,000' with a total error of no more than ± 0.30 ft. If a 100' tape is used and the distance can be measured using full tape measures, what is the maxim error per tape measure allowed?

Answers

Answer:

± 0.003 ft

Explanation:

Since our distance is 10,000 ft and we need to use a full tape measure of 100 ft. We find that 10,000 = 100 × 100.

Let L' = our distance and L = our tape measure

So, L' = 100L

Now by error determination ΔL' = 100ΔL

Now ΔL' = ± 0.30 ft

ΔL = ΔL'/100

= ± 0.30 ft/100

= ± 0.003 ft

So, the maxim error per tape is ± 0.003 ft

Here are the commonly used Baud rate: 2400,4800,9600,19200,38400, 115200, 460800 There is an inertial measurement unit (IMU) measurement sensor that needs to update 98 bytes data (with extra 2 label bytes) every 10 ms (100Hz), what is the minimum requirement of the baud rate? (1 byte = 8 bits) Which of the above listed Baud rate you can choose to use? (please list all of them) .

Answers

Answer:

115200 and  460800

Explanation:

which of the above listed Baud rate can you choose from

Given Baud rate : 2400,4800,9600,19200,38400, 115200, 460800

The Total bytes = 98 data bytes + 2 extra label bytes for every 10 ms

                           = 100 bytes for every 10 ms

hence the data rate per second

= [tex]\frac{100 * 8}{10*10^{-3} }[/tex]  = 80000

minimum required Baud rate = 80000

Therefore The Baud rate that can be chosen from are :  115200 and  460800

An inductor has an inductance of 0.025 H and a wire resistance of . How long will it take the current to reach its full Ohm’s law value?

Answers

Answer:

Time constant t = 0.0083 (Approx)

Explanation:

Given:

L = 0.025

Missing resistance r = 3Ω

Find:

Time constant t

Computation:

Time constant t = L / r

Time constant t = 0.025 / 3

Time constant t = 0.0083 (Approx)

Using the inductance - resistance relation to calculate the time constant , the time constant would be 0.08333

Given the Parameters :

Inductance in Henry = 0.025 H

Resistance of wire in ohms, R = 3 ohms

The time taken for current to reach the wire can be calculated thus :

Time constant = (Inductance, L) ÷ resistance, R

Time constant = 0.025 ÷ 3 = 0.083333

Therefore, the time constant for current to reach is 0.08333

Learn more : https://brainly.com/question/13752456

In an axial flow compressor air enters the compressor at stagnation conditions of 1 bar and 290 K. Air enters with an absolute velocity of 145 m/s axially into the first stage of the compressor and axial velocity remains constant through the stage. The rotational speed is 5500 rpm and stagnation temperature rise is 22 K. The radius of rotor-blade has a hub to tip ratio of 0.5. The stage work done factor is 0.92, and the isentropic efficiency of the stage is 0.90. Assume for air Cp=1005 kJ/(kg·K) and γ= 1.4

Determine the followings. List your assumptions.

i. The tip radius and corresponding rotor angles at the tip, if the inlet Mach number for the relative velocity at the tip is limited to 0.96.
ii. The mass flow at compressor inlet.
iii. The stagnation pressure ratio of the stage and power required by the first stage.
iv. The rotor angles at the root section.

Answers

Answer:

i) r_t = 0.5101 m

ii) m' = 106.73 kg/s

iii) R_s = 1.26

P = 2359.8 kW

iv) β2 = 55.63°

Explanation:

We are given;

Stagnation pressure; T_01 = 290 K

Inlet velocity; C1 = 145 m/s

Cp for air = 1005 kJ/(kg·K)

Mach number; M = 0.96

Ratio of specific heats; γ = 1.4

Stagnation pressure; P_01 = 1 bar

rotational speed; N = 5500 rpm

Work done factor; τ = 0.92

Isentropic effjciency; η = 0.9

Stagnation temperature rise; ΔT_s = 22 K

i) Formula for Stagnation temperature is given as;

T_01 = T1 + C1/(2Cp)

Thus,making T1 the subject, we havw;

T1 = T_01 - C1/(2Cp)

Plugging in the relevant values, we have;

T1 = 290 - (145/(2 × 1005))

T1 = 289.93 K

Formula for the mach number relative to the tip is given by;

M = V1/√(γRT1)

Where V1 is relative velocity at the tip and R is a gas constant with a value of 287 J/Kg.K

Thus;

V1 = M√(γRT1)

V1 = 0.96√(1.4 × 287 × 289.93)

V1 = 0.96 × 341.312

V1 = 327.66 m/s

Now, tip speed is gotten from the velocity triangle in the image attached by the formula;

U_t = √(V1² - C1²)

U_t = √(327.66² - 145²)

U_t = √86336.0756

U_t = 293.83 m/s

Now relationship between tip speed and tip radius is given by;

U_t = (2πN/60)r_t

Where r_t is tip radius.

Thus;

r_t = (60 × U_t)/(2πN)

r_t = (60 × 293.83)/(2π × 5500)

r_t = 0.5101 m

ii) Now mean radius from derivations is; r_m = 1.5h

While relationship between mean radius and tip radius is;

r_m = r_t - h/2

Thus;

1.5h = 0.5101 - 0.5h

1.5h + 0.5h = 0.5101

2h = 0.5101

h = 0.5101/2

h = 0.2551

So, r_m = 1.5 × 0.2551

r_m = 0.3827 m

Formula for the area is;

A = 2πr_m × h

A = 2π × 0.3827 × 0.2551

A = 0.6134 m²

Isentropic relationship between pressure and temperature gives;

P1 = P_01(T1/T_01)^(γ/(γ - 1))

P1 = 1(289.93/290)^(1.4/(1.4 - 1))

P1 = 0.9992 bar = 0.9992 × 10^(5) N/m²

Formula for density is;

ρ1 = P1/(RT1)

ρ1 = 0.9992 × 10^(5)/(287 × 289.93)

ρ1 = 1.2 kg/m³

Mass flow rate at compressor inlet is;

m' = ρ1 × A × C1

m' = 1.2 × 0.6134 × 145

m' = 106.73 kg/s

iii) stagnation pressure ratio is given as;

R_s = (1 + ηΔT_s/T_01)^(γ/(γ - 1))

R_s = (1 + (0.9 × 22/290))^(1.4/(1.4 - 1))

R_s = 1.26

Work is;

W = C_p × ΔT_s

W = 1005 × 22

W = 22110 J/Kg

Power is;

P = W × m'

P = 22110 × 106.73

P = 2359800.3 W

P = 2359.8 kW

iv) We want to find the rotor angle.

now;

Tan β1 = U_t/C1

tan β1 = 293.83/145

tan β1 = 2.0264

β1 = tan^(-1) 2.0264

β1 = 63.73°

Formula for Stagnation pressure rise is given by;

ΔT_s = (τ•U_t•C1/C_p) × tan(β1 - β2)

Plugging in the relevant values;

22 = (0.92 × 293.83 × 145/1005) × (tan 63.73 - tan β2)

(tan 63.73 - tan β2) = 0.5641

2.0264 - 0.5641 = tan β2

tan β2 = 1.4623

β2 = tan^(-1) 1.4623

β2 = 55.63°

For two different air velocities, the Nusselt number for two different diameter cylinders in cross flow is the same. The average heat transfer coefficient for the smaller-diameter cylinder is:_______

a. The same as that of the larger-diameter cylinder
b. Larger than that of the larger-diameter cylinder
c. Smaller than that of the larger-diameter cylinder

Answers

Answer:

B. Larger than that of the larger-diameter cylinder

Explanation:

By looking at the equation for the Nusselt number for a cylinder in cross flow, Nu = hd/k, and assuming both cylinders are made of the same material, you can see that the heat transfer coefficient h will have to be much larger for the smaller cylinder. You can verify this by using random numbers for each variable (shown below).

Verification:

ds = 1

db = 10

k = 12

Nu = 10

h small = ?

h big = ?

Nu = hd/k

10 = h small * ds / 12

120 = 1 * h small

h small = 120

Nu = hd/k

10 = h big*db / 12

120 = 10 * h big

h big = 12

This shows that the heat transfer coefficient for the smaller diameter, ds, must be bigger than the heat transfer coefficient for the larger diameter, db.

For two different air velocities, the Nusselt number for two different diameter cylinders in cross flow is the same. The average heat transfer coefficient for the smaller-diameter cylinder is " Smaller than that of the larger-diameter cylinder." (Option C)

What does the information confirm about this?

The given information states that for two different air velocities, the Nusselt number for two different diameter cylinders in cross flow is the same.

The Nusselt number is a dimensionless number that relates the convective heat transfer rate to the conductive heat transfer rate.

Since the Nusselt number is the same for both cylinders, and the heat transfer coefficient is directly related to the Nusselt number, the smaller-diameter cylinder will have a smaller average heat transfer coefficient compared to the larger-diameter cylinder.

Thus option C is the right answer.

Learn more about heat transfer at:

https://brainly.com/question/16055406

#SPJ2

A thin, flat pate that is 0.2m by 0.2m on a side is oriented parallel to an atmospheric airstream having a velocity of 40m/s. The air is at a temperature of T∞ = 20 °C, while the plate is maintained at Ts = 1200 C. The air flows over the top and bottom surfaces of the plate, and measurement of the drag force reveals a value of 0.075 N. What is the rate of heat transfer from both sides of the plate to the air?

Answers

This question is incomplete, the complete question is;

A thin, flat pate that is 0.2m by 0.2m on a side is oriented parallel to an atmospheric airstream having a velocity of 40m/s. The air is at a temperature of T∞ = 20 °C, while the plate is maintained at Ts = 120°C. The air flows over the top and bottom surfaces of the plate, and measurement of the drag force reveals a value of 0.075 N.

What is the rate of heat transfer from both sides of the plate to the air?

Answer:

the rate of heat transfer from both sides of the plate to the air is 236.54 W

Explanation:

Given the data in the question,

first we calculate the  Reynold's number for the flow

Re = pu∞d / Ц

Re = (1.12 × 40 × 0.2) / 1.983 × 10⁻⁵

Re = 451840

Now the Local skin friction coefficient is given as;

Cfx =  T / ( 1/2pu∞²)

Cfx = (Fd/A) / ( 1/2pu∞²)

Cfx = (0.075/(2×0.2×0.2)) / ( 1/2 × 1.12 × 40²)

= 0.9375 / 896

= 0.0010463

Cfx = 1.0463 × 10⁻³

Apply Reynold's- cOLBURN analogy

Cfx/2 = StₓPr^2/3

so

1.0463 × 10⁻³ / 2 = (h/pu∞Cp) × ( 0.711)^2/3

5.2315 × 10⁻⁴ × 1.12 × 40 × 1.005 × 1000 = h(0.711)^2/3

h = 23.554 / 0.7966

h = 29.56 W/m².K

so

The heat transfer rate from both the sides of the plate will be;

Q = 2 × 29.56 × 0.2 × 0.2 × ( 120 - 20 )

Q = 236.54 W

Therefore the rate of heat transfer from both sides of the plate to the air is 236.54 W

Consider the following ways of handling deadlock: (1) banker’s algorithm, (2) detect
deadlock and kill thread, releasing all resources, (3) reserve all resources in advance,
(4) restart thread and release all resources if thread needs to wait, (5) resource ordering, and (6) detect deadlock and roll back thread’s actions.
a. One criterion to use in evaluating different approaches to deadlock is which
approach permits the greatest concurrency. In other words, which approach allows
the most threads to make progress without waiting when there is no deadlock?
Give a rank order from 1 to 6 for each of the ways of handling deadlock just listed,
where 1 allows the greatest degree of concurrency. Comment on your ordering.
b. Another criterion is efficiency; in other words, which requires the least processor
overhead. Rank order the approaches from 1 to 6, with 1 being the most efficient,
assuming that deadlock is a very rare event. Comment on your ordering. Does
your ordering change if deadlocks occur frequently?


who can answer part B for me?

Answers

Answer:

b

Explanation:

Air is compressed isothermally from 13 psia and 55°F to 80 psia in a reversible steady-flow device. Calculate the work required, in Btu/lbm, for this compression. The gas constant of air is R.

Answers

Answer:64.10 Btu/lbm

Explanation:

Work done in an isothermally compressed steady flow device is expressed as

Work done = P₁V₁ In { P₁/ P₂}

Work done=RT In { P₁/ P₂}

where P₁=13 psia

          P₂= 80 psia

Temperature =°F Temperature is convert to  °R

T(°R) = T(°F) + 459.67

T(°R) = 55°F+ 459.67

=514.67T(°R)

According to the properties of molar gas, gas constant and critical properties table, R  which s the gas constant of air is given as 0.06855 Btu/lbm

Work = RT In { P₁/ P₂}

0.06855 x 514.67 In { 13/ 80}

=0.06855 x 514.67 In {0.1625}

= 0.06855 x 514.67  x -1.817

=- 64.10Btu/lbm

The required work therefore for this  isothermal compression is 64.10 Btu/lbm

A rigid tank of volume of 0.06 m^3 initially contains a saturated mixture of liquid and vapor of H2O at a pressure of 15 bar and a quality of 0.2. The tank has a pressure-regulating venting valve that allows pressure to be constant. The tank is subsequently being heated until its content becomes a saturated vapor (of quality 1.0). During heating, the pressure-regulating valve keeps the pressure constant in the tank by allowing saturated vapor to escape. You can neglecting the kinetic and potential energy effects.

Required:
a. Determine the total mass in the tank at the initial and final states, in kg.
b. Calculate the amount of heat (in kJ) transferred from the initial state to the final state.

Answers

Answer:

The total mass in the tank = 0.45524  kg

The amount of heat transferred = 3426.33 kJ

Explanation:

Given that:

The volume of the tank V = 0.06 m³

The pressure of the liquid and the vapor of H2O (p) = 15 bar

The initial quality of the mixture [tex]\mathbf{x_{initial} - 0.20}[/tex]

By applying the energy rate balance equation;

[tex]\dfrac{dU}{dt} = Q_{CV} - m_eh_e[/tex]

where;

[tex]m_e =- \dfrac{dm_{CV}}{dt}[/tex]

Thus, [tex]\dfrac{dU}{dt} =Q_{CV} + \dfrac{dm_{CV}}{dt}h_e[/tex]

If we integrate both sides; we have:

[tex]\Delta u_{CV} = Q_{CV} + h _e \int \limits ^2_1 \ dm_{CV}[/tex]

[tex]m_2u_2 - m_1 u_1 = Q_{CV} + h_e (M_2-m_1) \ \ \ --- (1)[/tex]

We obtain the following data from the saturated water pressure tables, at p = 15 bar.

Since:

[tex]h_e =h_g[/tex]

Then: [tex]h_g = h_e = 2792.2 \ kJ/kg[/tex]

[tex]v_f = 1.1539 \times 10^{-3} \ m^3 /kg[/tex]

[tex]v_g = 0.1318 \ m^3/kg[/tex]

Hence;

[tex]v_1 = v_f + x_{initial} ( v_g-v_f)[/tex]

[tex]v_1 = 1.1529 \times 10^{-3} + 0.2 ( 0.1318-1.159\times 10^{-3} )[/tex]

[tex]v_1 = 0.02728 \ m^3/kg[/tex]

Similarly; we obtained the data for [tex]u_f \ \& \ u_g[/tex] from water pressure tables at p = 15 bar

[tex]u_f = 843.16 \ kJ/kg\\\\ u_g = 2594.5 \ kJ/kg[/tex]

Hence;

[tex]u_1 = u_f + x_{initial } (u_g -u_f)[/tex]

[tex]u_1 =843.16 + 0.2 (2594.5 -843.16)[/tex]

[tex]u_1 = 1193.428[/tex]

However; the initial mass [tex]m_1[/tex] can be calculated by using the formula:

[tex]m_1 = \dfrac{V}{v_1}[/tex]

[tex]m_1 = \dfrac{0.06}{0.02728}[/tex]

[tex]m_1 = 2.1994 \ kg[/tex]

From the question, given that the final quality; [tex]x_2 = 1[/tex]

[tex]v_2 = v_f + x_{final } (v_g - v_f)[/tex]

[tex]v_2 = 1.1539 \times 10^{-3} + 1(0.1318 -1.1539 \times 10^{-3})[/tex]

[tex]v_2 = 0.1318 \ m^3/kg[/tex]

Also;

[tex]u_2 = u_f + x_{final} (u_g - u_f)[/tex]

[tex]u_2 = 843.16 + 1 (2594.5 - 843.16)[/tex]

[tex]u_2 = 2594.5 \ kJ/kg[/tex]

Then the final mass can be calculated by using the formula:

[tex]m_2 = \dfrac{V}{v_2}[/tex]

[tex]m_2 = \dfrac{0.06}{0.1318}[/tex]

[tex]m_2 = 0.45524 \ kg[/tex]

Thus; the total mass in the tank = 0.45524  kg

FInally; from the previous equation (1) above:

[tex]m_2u_2 - m_1 u_1 = Q_{CV} + h_e (M_2-m_1) \ \ \ --- (1)[/tex]

[tex]Q = (m_2u_2-m_1u_1) - h_e(m_2-m_1)[/tex]

Q = [(0.45524)(2594.5) -(2.1994)(1193.428)-(2792.2)(0.45524-2.1994)]

Q = [ 1181.12018 - 2624.825543 - (2792.2)(-1.74416 )]

Q = 3426.33 kJ

Thus, the amount of heat transferred = 3426.33 kJ

The seers were of the opinion that_____ . *

a healthy mind guides a healthy body.

the healthy body needs no exercise.

a healthy mind resides in a healthy body.

the healthy mind resides in every body.​

Answers

Answer:

✔️a healthy mind resides in a healthy body.

Explanation:

The seers were of the opinion that "a healthy mind resides in a healthy body."

Just like the English translation of a famous quotation from Thales, pre-Socratic Greek philosopher puts it "a sound mind in a sound body"; which tries to demonstrate the close connections that exists in bodily well-being and one's ability to enjoy life.

The seers were actually of the opinion that a healthy mind resides in a healthy body. It implies that there is connection between the body and the mind. When the body catches an illness, the mind and other parts of the body are affected. When our minds are not healthy, it affects the effective functioning of the body.

So, a healthy mind will definitely be found in a healthy body.

✔️a healthy mind resides in a healthy body.

Explanation:

The seers were of the opinion that "a healthy mind resides in a healthy body."

Just like the English translation of a famous quotation from Thales, pre-Socratic Greek philosopher puts it "a sound mind in a sound body"; which tries to demonstrate the close connections that exists in bodily well-being and one's ability to enjoy life.

The seers were actually of the opinion that a healthy mind resides in a healthy body. It implies that there is connection between the body and the mind. When the body catches an illness, the mind and other parts of the body are affected. When our minds are not healthy, it affects the effective functioning of the body.

So, a healthy mind will definitely be found in a healthy body.

Write out simple definitions in words and equations for the following:

a. a1
b. b1
c. S11
d. S12
e. S21
f. S22

Answers

Answer:

a) a1 : This is the incident voltage at port 1

b) b1 : This is the deflected voltage at port 1 ;

      b1 = [tex]S_{21} a_{1} + S_{22} a_{2}[/tex]

c) S11 ; This is the input port voltage reflection coefficient when the input voltage is at port 1

S11 = [tex]\frac{V1^-}{V1^+} |v2^+=0[/tex]

d) S12 : this is the gross voltage gain

S12 = [tex]\frac{V1^-}{V2^+}| v1 ^+[/tex]

e) S21 : This is the forward voltage gain

    S21 = [tex]\frac{V2^-}{V1^+} | v2^+[/tex]

f) S22 : output port voltage reflection coefficient

   S22 = [tex]\frac{v2^-}{v2^+} | v1^+ = 0[/tex][tex]\frac{v2^-}{v2^+} | v1^+ = 0[/tex]

Explanation:

a) a1 : This is the incident voltage at port 1

b) b1 : This is the deflected voltage at port 1 ;

      b1 = [tex]S_{21} a_{1} + S_{22} a_{2}[/tex]

c) S11 ; This is the input port voltage reflection coefficient when the input voltage is at port 1

S11 = [tex]\frac{V1^-}{V1^+} |v2^+=0[/tex]

d) S12 : this is the gross voltage gain

S12 = [tex]\frac{V1^-}{V2^+}| v1 ^+[/tex]

e) S21 : This is the forward voltage gain

    S21 = [tex]\frac{V2^-}{V1^+} | v2^+[/tex]

f) S22 : output port voltage reflection coefficient

   S22 = [tex]\frac{v2^-}{v2^+} | v1^+ = 0[/tex][tex]\frac{v2^-}{v2^+} | v1^+ = 0[/tex]

A cylindrical bar of metal having a diameter of 19.2 mm and a length of 207 mm is deformed elastically in tension with a force of 52900 N. Given that the elastic modulus and Poisson's ratio of the metal are 61.4 GPa and 0.34, respectively, determine the following:

a. The amount by which this specimen will elongate in the direction of the applied stress.
b. The change in diameter of the specimen. Indicate an increase in diameter with a positive number and a decrease with a negative number.

Answers

Answer:

1)ΔL = 0.616 mm

2)Δd = 0.00194 mm

Explanation:

We are given;

Force; F = 52900 N

Initial length; L_o = 207 mm = 0.207 m

Diameter; d_o = 19.2 mm = 0.0192 m

Elastic modulus; E = 61.4 GPa = 61.4 × 10^(9) N/m²

Now, from Hooke's law;

E = σ/ε

Where; σ is stress = force/area = F/A

A = πd²/4 = π × 0.0192²/4

A = 0.00009216π

σ = 52900/0.00009216π

ε = ΔL/L_o

ε = ΔL/0.207

Thus,from E = σ/ε, we have;

61.4 × 10^(9) = (52900/0.00009216π) ÷ (ΔL/0.207)

Making ΔL the subject, we have;

ΔL = (52900 × 0.207)/(61.4 × 10^(9) × 0.00009216π)

ΔL = 0.616 × 10^(-3) m

ΔL = 0.616 mm

B) Poisson's ratio is given as;

υ = ε_x/ε_z

ε_x = Δd/d_o

ε_z = ΔL/L_o

Thus;

υ = (Δd/d_o) ÷ (ΔL/L_o)

Making Δd the subject gives;

Δd = (υ × d_o × ΔL)/L_o

We are given Poisson's ratio to be 0.34.

Thus;

Δd = (0.34 × 19.2 × 0.616)/207

Δd = 0.00194 mm

1. An asbestos pad is square in cross section, measuring 5 cm on a side at its small end, increasing linearly to 10 cm on a side at the large end. The pad is 15 cm high. If the small end is held at 600 K and the large end at 300 K, what heat‐flow rate will be obtained if the four sides are insulated?2. Solve Problem for the case of the larger cross section exposed to the higher temperature and the smaller end held at 300 K.

Answers

The answer is : 1.73W

What overall material composition would be required to give a material made up of 50wt% mullite and 50wt% alumina at 1400°C?

Answers

Answer: overall composition ⇒ 87 wt% { AL₂O₃] + 13% wt { SiO₂}

Explanation:

Given that;

from the phase diagram SiO₂ - Al₂O₃

alumina at 1400°C

mullite + alumina ranges from 74 - 100% wt

so for 50% mullite and 50wt% alumina

we have;

50/100 = 100 - x /  100 - 74

0.5 = 100 - x / 26

0.5 × 26 = 100 - x

13 = 100 - x

x = 100 - 13

x = 87 wt% { AL₂O₃]

[ 100% - 87% = 13%] 13% wt SiO₂

So overall composition ⇒ 87 wt% { AL₂O₃] + 13% wt { SiO₂}

We put capacitors on our voltage supplies in order to filter out high frequency noise. Which is better. a 10uF capacitor or a 0.1uF capacitor? Why?

Answers

Answer:

10uF

Explanation:

A higher value of capacitance is the best option when we are trying to filter power supply outputs in other to reduce hum.

The greater the capacitance or the voltage of a circuit is, the more energy it can the particular circuit can store. When capacitors are being connected in series, the total value of the capacitance reduces but contrarily, the voltage of the same system increases anyway. Connecting circuits in parallel helps to keep the voltage rating the same but on the other hand, it increases the total capacitance.

A 10 μF capacitor is better.

This is because, to filter out high frequency noise, our capacitor is connected in parallel with the voltage supply. This parallel connection causes the capacitance of the circuit to increase but the voltage stays constant.

Since there is an increase in capacitance, this causes the circuit to filter out high frequency noise.

So, a high value capacitance connected in parallel with the voltage source is a better filter for high frequency noise.

So, the 10 μF capacitor is better.

Learn more about capacitors here:

https://brainly.com/question/24927491

A cylinder 10 mm in diameter is pulled with a stress of 150 MPa. The diameter elastically decreased by 0.007 mm. Determine Poisson's ratio if the material has a elastic modulus of 100 GPa.

Answers

Answer:Poisson's Ratio,μ =  0.46

Explanation:

Poisson's Ratio is calculate as

μ = transverse/ longitudinal strain 

μ = -  εt / εl                          

where

μ = Poisson's ratio

εt = transverse strain

εl = longitudinal  strain  

Transverse strain can be expressed as

εt = change in diameter / initial diameter                            

where

εt =transverse  strain  

change in diameter=0.007mm

initial diameter = 10mm

εt =0.007mm/ 10mm= 0.0007

Longitudinal strain can be expressed as

εl=Stress/ elastic modulus =  σ/ E

= Stress = 150 MPa ,  converting to GPa becomes 150/1000 = 0.15 GPa

εl=  0.15 GPa / 100  GPa= 0.0015

Poisson's Ratio,μ = transverse/ longitudinal strain

( 0.0007 /0.0015) = 0.46 =0.46

Identify how the average friction and heat transfer coefficients are determined in flow over a flat plate.
A) They are determined by differentiating the local friction and heat transfer coefficients at the mid-length of the plate, and then multiplying them by the length of the plate.
B) They are determined by by integrating the local Reynolds number and Nusselt numbers over the entire plate.
C) They are determined by integrating the local friction and heat transfer coefficients over the entire plate, and then dividing them by the length of the plate.
D) They are determined by by differentiating the local Reynolds number and Nusselt numbers at the mid-length of the plate.

Answers

Answer:

C.

Explanation:

Let's have

Q = heat transfer surface

∆T = average temperature

F = area of the heat surface

Then the heat transfer coefficient = Q/∆T*F

In a flow over flat plate, the average friction and the heat transfer coefficient are determined by the integration of local friction and also great transfer coefficients over the plate entirely and then dividing by the plates length.

Therefore answer option C is the answer to this question.

Given a 12-bit A/D converter operating over a voltage range from ????5 V to 5 V, how much does the input voltage have to change, in general, in order to be detectable

Answers

Answer:

2.44 mV

Explanation:

This question has to be one of analog quantization size questions and as such, we use the formula

Q = (V₂ - V₁) / 2^n

Where

n = 12

V₂ = higher voltage, 5 V

V₁ = lower voltage, -5 V

Q = is the change in voltage were looking for

On applying the formula and substitutiting the values we have

Q = (5 - -5) / 2^12

Q = 10 / 4096

Q = 0.00244 V, or we say, 2.44 mV

Water leaves a penstock (the flow path through a hydroelectric dam) at a velocity of 100 ft/s. How deep is the water behind the dam (in ft). Neglect friction. [h = 155 ft]

Answers

Answer:

155fts

Explanation:

We apply the bernoulli's equation to get the depth of water.

We have the following information

P1 = pressure at top water surface = 0

V1 = velocity at too water surface = 0

X1 = height of water surface = h

Hf = friction loss = 0

P2 = pressure at exit = 0

V2 = velocity at exit if penstock = 100ft/s

X2 = height of penstock = 0

g = acceleration due to gravity = 32.2ft/s²

Applying these values to the equation

0 + 0 + h = 0 + v2²/2g +0 + 0

= h = 100²/2x32.2

= 10000/64.4

= 155.28ft

= 155

what is an example of an innovative solution to an engineering problem? Explain briefly why you chose this answer.

Answers

Answer:

robotic technology    

Explanation:

Innovation is nothing but the use of various things such as ideas, products, people to build up a solution for the benefit of the human. It can be any product or any solution which is new and can solve people's problems.

Innovation solution makes use of technology to provide and dispatch new solutions or services which is a combination of both technology and ideas.

One such example of an innovative solution we can see is the use of "Robots" in medical science or in any military operations or rescue operation.

Sometimes it is difficult for humans to do everything or go to everywhere. Thus scientist and engineers have developed many advance robots or machines using new ideas and technology to find solutions to these problems.

Using innovations and technologies, one can find solutions to many problems which is difficult for the peoples. Robots can be used in any surveillance operation or in places of radioactive surrounding where there is a danger of humans to get exposed to such threats. They are also used in medical sciences to operate and support the patient.  

is a process that is used to systematically solve problems.

design

engineering

brainstorming

O teamwork

Answers

Answer:

design

Explanation:

Design is a process used to solve problems systematically.

Human beings have specific needs and desires, which require a design process to interpret those needs and make them real from a product or service.

Design uses specific methods and techniques integrating ideals, creativity, technology and innovation to satisfy users' needs and solve problems.

A rear wheel drive car has an engine running at 3296 revolutions/minute. It is known that at this engine speed the engine produces 80 hp. The car has an overall gear reduction ratio of 10, a wheel radius of 16 inches, and a 95% drivetrain mechanical efficiency. The weight of the car is 2600 lb, the wheelbase is 95 inches, and the center of gravity is 22 inches above the roadway surface. What is the closest distance the center of gravity can be behind the front axle to have the vehicle achieve its maximum acceleration from rest on good, wet pavement?

Answers

Answer:

the closest distance the center of gravity can be behind the front axle to have the vehicle achieve its maximum acceleration from rest on good, wet pavement is 47.8 in

Explanation:

Given that;

Weight of car W = 2600 lb

power = 80 hp = 44000 lb ft/s

Engine rpm = 3296

gear reduction ratio e = 10

drivetrain efficiency n = 95% = 0.95

wheel radius R = 16 in  = 1.3333 ft

Length of wheel base L = 95 in =

coefficient of road adhesion u = 0.60

height of center of gravity above pavement  h = 22 in

we know that;

Coefficient of rolling resistance frl = 0.01 for good wet pavement

distance of center of gravity behind the front axle lf = ?

Maximum tractive effort (Fmax) =  (uW / L) (lf - frl h) / (1 - uh / L)

First we calculate our Fmax to help us find lf

Power = Torque × 2π × Engine rpm / 60 )

44000 = Torque ( 2π×3296 / 60)

Torque = 127.5 lb ft  

so

Fmax = Torque × e × n / R

so we substitute in our values

Fmax = 127.5 × 10 × 0.95 / 1.333

Fmax = 908.66 lb

Now we input all our values into the initial formula

(Fmax) =  (uW / L) (lf - frl h) / (1 - uh / L)

908.66 =  [(0.6×2600/95) (lf - 0.01×22)] / [1 - 0.6×22) / 95]

908.66 = (16.42( lf - 0.22)) / 0.86

781.4476 = (16.42( lf - 0.22))

47.59 = lf - 0.22

lf = 47.59 + 0.22

lf = 47.8 in

Therefore the closest distance the center of gravity can be behind the front axle to have the vehicle achieve its maximum acceleration from rest on good, wet pavement is 47.8 in

Which type of forming operation produces a higher quality surface finish, better mechanical properties, and closer dimensional control of the finished piece?A. Hot working.B. Cold working.

Answers

Answer:

Option B (Cold working) would be the correct alternative.

Explanation:

Cold working highlights the importance of reinforcing material without any need for heat through modifying its structure or appearance. Metal becomes considered to have been treated in cold whether it is treated economically underneath the material's transition temperature. The bulk of cold operating operations are carried out at room temperature.

The other possibility isn't linked to the given scenario. Therefore the alternative above is the right one.

A mixture of octane, C8H18, and air flowing into a combustor has 60% excess air and 1 kmol/s of octane. What is the mole flow rate (kmol/s) of CO2 in the product stream?

Answers

Answer:

8 kmol/s

Explanation:

From the given information:

The combustion reaction equation for Octane in a stoichiometric condition can be expressed as:

[tex]C_{8}H_{18} +12.5(O_2 + \dfrac{79}{21} N_2) \to 9H_2O +8CO_2 + 12.5(\dfrac{79}{21}N_2)[/tex]

[tex]C_{8}H_{18} +12.5(O_2 + 3.76N_2) \to 9H_2O +8CO_2 + 12.5(3.76 \ N_2)[/tex]

In the combustor, it is said that 60% of excess air and 1 mole of Octane is present.

Thus;

the air supplied = 1.6  × 12.5 = 20

The equation can now be re-written as:

[tex]C_{8}H_{18} +20(O_2 + 3.76N_2) \to 9H_2O +8CO_2 + 7.5 \ O_2+ 75.2 \ N_2[/tex] because for 1 mole of Octane, 8 moles of CO2 can be found in the combustion product.

Thus, for 1 kmol/s of Octane also produce 8 kmol/s of CO2.

The mole flow rate in Kmol/s of CO2 in the product stream = 8 kmol/s

In a p+-n Si junction, the n side has a donor concentration of 1016 cm^-3. If ni = 1010 cm^-3, relative dielectric constant Pr = 12, calculate the depletion width at a reverse bias of 100 V? What is the electric field at the mid-point of the depletion region on the n side?

Answers

Answer:

This graph shows linear

y = f(x) and y = g(x).

Find the solution to the equation f(x) - g(x) = 0

Other Questions
Water enters a centrifugal pump axially at atmospheric pressure at a rate of 0.12 m3/s and at avelocity of 7 m/s, and leaves in the normal direction along the pump casing, as shown in Figure.Determine the force acting on the shaft (which isalso the force acting on the bearing of the shaft) inthe axial direction. Which of the following was not a problem Sam Houston faced in his second term as president of Texas? a. religious rebellion b. extensive debt c. Mexican invasion d. land certificate disputes ClassworkExample 1Which of the following correctly models that the number of red gumballs is the number of white gumballs?53a.Redb.RedWhiteWhitec.Redd.RedWhiteWhite questions below a1. What messages do these ads give to the middle adolescents like you? IN A TEST!! URGENT!! Which of the following is NOT a cause of one-parent families?a. divorcec.death of a spouseb. births to unwed mothersd. delayed marriage What means to "fix or change" Which of the following answers best explains why the Lilliputians fed Gulliver andtransported him to the capital city?Answer choices for the above questionA. They realized that they would be safer with him as an ally than as an enemy.B. They had a bigger army waiting in the capital city and would have a betterchance at being able to defeat him.C. They wanted to dress his wounds before they began his interrogation.D. They believed he was a god and brought him to their city to be worshipped.30 Points answer ASAP Question 1Part A: What can you conclude from the text?The narrator is unsure about who she lovesThe narrator is fighting for her life.The narrator struggles with giving her life for the one she loves.O The narrator is unable to choose. For how many years did the Crusades last? A scientist claims that a certain chemical will make fabric waterproof. Whichoption describes a controlled experiment that will produce evidence that willsupport or refute her claim?A. Two groups of fabric are treated with the chemical. One group iscotton and the other is polyester. Then each group is exposed towater.B. One group of fabric is treated with the chemical, and the othergroup is not. Then each group is exposed to water.C. One group of fabric is treated with a small amount of thechemical, and the other group is treated with a large amount. Theneach group is exposed to water.O D. Two groups of fabric are treated with the chemical. Then onegroup is exposed to a small amount of water, and the other groupis exposed to a large amount. 4 movie tickets cost $48. At this rate, what is the cost of 8 movie tickets? PLEASE HELP ILL GIVE YOU DA BRAINLIESTTTTT 16 popular folk songs Do you think there's a difference between what emotions are acceptable for girls and boys to display? What impact do emotional stereotype have on society A __________ names part of a whole, part of a set,or a location on a number line.A: decimalB: fraction Someone took the wrong jacket. If (he/she, they) returns it please call me. Why was Europe afraid of the Ottoman Empire? when were the aztecs around HELP For each triangle, find x and the measure of each side.FGH is an equilateral triangle with FG = x +5, GH = 3x 9, and FH = 2x 2.I DID ALGEBRA LAST YEAR HOW AM I SUPPOSED TO REMEMBER THIS AHHH Question 1 (1 point) Which of the following terms refers to activities ranging from buying food at a grocery store to burning natural gas as an energy source?Question 1 options:CommunismCorruptionConsumptionCapitalismQuestion 2 (1 point) When did the US have the highest recorded unemployment rate in its history?Question 2 options:The end of WWIIThe 2008 RecessionThe Great DepressionThe Coronavirus PandemicQuestion 3 (1 point) If two people negotiate a price of something, based on what one person is willing to pay and what another is willing to sell for, then they are operating a system governed by what principle?Question 3 options:Fairness and EquitySupply and DemandEquality for AllBuyer BewareRegulationRead each of the following sources, then answer the connected questionsSource 1: An Evaluation of the New Deal, government programs put in place in the 1930's in the US as a response to the Great Depression, excerpt from a textbookHow effective was the New Deal at addressing the problems of the Great Depression?The New Deal itself created millions of jobs and sponsored public works projects that reached most every county in the nation. Federal protection of bank deposits ended the dangerous trend of bank runs. Abuse of the stock market was more clearly defined and monitored to prevent collapses in the future. The Social Security system was modified and expanded to remain one of the most popular government programs for the remainder of the century. For the first time in peacetime history the federal government assumed responsibility for managing the economy. The legacy of social welfare programs for the destitute and underprivileged would ring through the remainder of the 1900s.Laborers benefited from protections as witnessed by the emergence of a new powerful union, the CONGRESS OF INDUSTRIAL ORGANIZATIONS. African Americans and women received limited advances by the legislative programs, but FDR was not fully committed to either civil or women's rights. All over Europe, fascist governments were on the rise, but Roosevelt steered America along a safe path when economic spirits were at an all-time low.---Source 2: Excerpt from The Conscience of a Conservative, written by Barry Goldwater, a conservative Republican senator from Arizona, in 1960. He starts by referring to Franklin Roosevelt's New Deal.Franklin Roosevelt's rapid conversion from Constitutionalism to the doctrine of unlimited government is an oft-told story . . . I am here concerned . . . by the unmistakable tendency of the Republican Party to adopt the same course. The result is that today neither of our two parties maintains a meaningful commitment to the principle of States' Rights. Thus, the cornerstone of the Republic, our chief bulwark against the encroachment of individual freedom by Big Government, is fast disappearing under the piling sands of absolutism. . . The Root evil is that the government is engaged in activities in which it has no legitimate business. As long as the federal government acknowledges responsibility in a given social or economic field, its spending in that field cannot be substantially reduced.Question 4 (1 point) Which of the following statements could best be supported by both sources?Question 4 options:After the crisis of the Great Depression the reforms of Franklin Roosevelt's New Deal were no longer necessary and so were removedFranklin Roosevelt's New Deal expanded the role of the government too much and is leading to tyrannyUnder the New Deal, President Franklin Roosevelt expanded the power of the government in the areas of society and economicsThe New Deal, under Franklin Roosevelt, was successful in reducing the pain caused by the Great DepressionQuestion 5 (1 point) Which of the following questions would the authors of the two sources most likely disagree about?Question 5 options:Did the New Deal have an overall positive effect?Did the New Deal have a long lasting effect?Did the New Deal change the role of the federal government?What did FDR do in response to the Great Depression?